STANDARD RESPONSE SPECTRA BASED ON ALASKA EARTHQUAKES

by

Mohamad F. Succiarih, Assistant Professor
Bean-Guat Sow, Graduate Student
Leroy Hulsey, Associate Professor
Ramaraju Paramatsu, Graduate Student

December 1994

FINAL REPORT

Report No. INE/TRC 94.11
SPR-UAF-92-5
STANDARD RESPONSE SPECTRA BASED ON ALASKA EARTHQUAKES

Mohamad F. Suecarieh, Assistant Professor
Bean-Guat Sow, Graduate Student
Leroy Hulsey, Associate Professor
Ramuja Ramamatsu, Graduate Student

Civil Engineering
University of Alaska Fairbanks

A report on research sponsored by
Alaska Department of Transportation and Public Facilities

December, 1994

Report No. INE/TRC-94.11

TRANSPORTATION RESEARCH CENTER
INSTITUTE OF NORTHERN ENGINEERING
UNIVERSITY OF ALASKA FAIRBANKS
FAIRBANKS, ALASKA 99775
Technical Report Documentation Page

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PR-UAF-92-05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Title and Subtitle</th>
<th>5. Reporting Date</th>
<th>6. Performing Organization Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard Response Spectra Based on Alaska Earthquakes</td>
<td>December, 1994</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author(s)</th>
<th>8. Performing Organization Report No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mohammed F. Sucreleh, Been-Guat Sow, Leroy Hulsey, Ramuraj Varamatsu</td>
<td>INE/TRC 94.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performing Organization Name and Address</th>
<th>10. Work Unit No. (TRAIS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institute of Northern Engineering</td>
<td></td>
</tr>
<tr>
<td>University of Alaska Fairbanks</td>
<td></td>
</tr>
<tr>
<td>Fairbanks, AK 99775-5800</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sponsoring Agency Name and Address</th>
<th>11. Contract or Grant No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Dept. of Transportation and Public Facilities Engineering and Operations Standards</td>
<td></td>
</tr>
<tr>
<td>Building</td>
<td></td>
</tr>
<tr>
<td>32 Channel Drive</td>
<td></td>
</tr>
<tr>
<td>Juneau, Alaska, 99801-7898</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supplementary Notes</th>
<th>13. Type of Report and Period Covered.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project was partially funded by the Federal Highway Administration (FHWA).</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Results of studies of regional and local seismicity, combined with attenuation relations, are usually expressed in the form of peak particle accelerations. These values of peak particle accelerations are multiplied by the ordinates of standardized response spectra to obtain response spectra for use in design. This study involves the development of standardized response spectra from Alaska Earthquakes. It includes collecting available strong motion records of Alaska earthquakes; correcting the uncorrected records using the available methods of earthquake record correction and providing a data bank of these corrected records; developing response spectra from each of these records; developing normalized vertical and horizontal response spectra (both mean and 85%) in the individual spectra; and comparing the developed spectra to corresponding ones from Japan and California earthquakes.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Words</th>
<th>18. Distribution Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismicity, earthquake response spectra, earthquakes, structure design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Security Classification (of this report)</th>
<th>Security Classification (of this page)</th>
</tr>
</thead>
<tbody>
<tr>
<td>classified</td>
<td>unclassified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Security Classification (of this page)</th>
<th>21. No. of Pages</th>
<th>22. Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>unclassified</td>
<td>396</td>
<td></td>
</tr>
</tbody>
</table>

1700.7 (8-72) Reproduction of completed page authorized
DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The document is disseminated through the Transportation Research Center, Institute of Northern Engineering, University of Alaska Fairbanks, under the sponsorship of the Alaska Cooperative Transportation and Public Facilities Research Program. This program is funded by the Alaska Department of Transportation and Public Facilities (AKDOT&PF). The contents do not necessarily reflect the views or policies of the Alaska Department of Transportation and Public Facilities or any local sponsor. This report does not constitute a standard, specification or regulation.
PROJECT SUMMARY

Results of studies of regional and local seismicity, combined with attenuation relations, are usually expressed in the form of peak particle accelerations. These values of peak particle accelerations are multiplied by the ordinates of standardized response spectra to obtain response spectra for use in design. This study involves the development of standardized response spectra from Alaska earthquakes. It includes collecting available strong motion records of Alaska Earthquakes; correcting the uncorrected records using one of the available methods of earthquake record correction and providing a data bank of these corrected records; developing response spectra from each of these records; developing normalized vertical and horizontal response spectra (both mean and 85%) from the individual spectra; and comparing the developed spectra to corresponding ones from Japan and California earthquakes.
TABLE OF CONTENTS

Acknowledgements ... 7
Project Summary ... 1
List of Figures ... 4
List of Tables ... 3
Chapter 1 Introduction ... 8
Chapter 2 Data Correction And Processing Software 10
 I. Developed Software .. 10
 II. Implemented Software ... 10
Chapter 3 Acceleration Time Series of Alaska Earthquakes 14
 I. Description of Plot Headings 15
 II. Earthquake Parameters .. 16
Chapter 4 Response Spectra .. 41
 I. Computation of Response Spectra 41
 II. Response Spectra From Alaska Earthquakes 44
Chapter 5 Statistical Analysis of Response Spectra 45
Chapter 6 Summary and Conclusion 82
Chapter 7 References ... 86
Appendix A Acceleration Time Histories From Alaska Earthquakes .. 89
Appendix B Response Spectra Associated with Acceleration Time Histories of
 Appendix A .. 245
LIST OF TABLES

Table 3-1 Strong Motion Recording Sites .. 18
Table 3-2 Earthquake Information and Recording Station Information Sorted by
 Station ... 19
Table 3-3 Earthquake Information and Recording Station Information Sorted by Event
 Date .. 30
Table 5-1 Earthquake Information and Recording Station Information (Horizontal
 Acceleration used in Statistical Analysis) 49
Table 5-2 Earthquake Information and Recording Station Information (Vertical
 Acceleration used in Statistical Analysis) 52
Table 5-3 Earthquake Information and Recording Station Information (Horizontal
 Acceleration with pkacc > 0.1g used in Statistical Analysis) 54
Table 5-4 Earthquake Information and Recording Station Information (Vertical
 Acceleration with pkacc > 0.05g used in Statistical Analysis) 55
Table 5-5 Normal Deviations from Mean, in a Normal Distribution, in Terms of
 Standard Deviation, as a Function of Cumulative Probability P [Adapted
 From Newmark et al., 1973] .. 56
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure 5.1</th>
<th>Average Acceleration Response Spectrum (All Horizontal Component Records)</th>
<th>57</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 5.2</td>
<td>S.D. of Acceleration Response Spectrum (All Horizontal Component Records)</td>
<td>58</td>
</tr>
<tr>
<td>Figure 5.3</td>
<td>85% of Acceleration Response Spectrum (All Horizontal Component Records)</td>
<td>59</td>
</tr>
<tr>
<td>Figure 5.4</td>
<td>Average Acceleration Response Spectrum (All Vertical Component Records)</td>
<td>60</td>
</tr>
<tr>
<td>Figure 5.5</td>
<td>S.D. of Acceleration Response Spectrum (All Vertical Component Records)</td>
<td>61</td>
</tr>
<tr>
<td>Figure 5.6</td>
<td>85% of Acceleration Response Spectrum (All Vertical Component Records)</td>
<td>62</td>
</tr>
<tr>
<td>Figure 5.7</td>
<td>Average Acceleration Response Spectrum (Horizontal Component Records with pkacc > 0.1g)</td>
<td>63</td>
</tr>
<tr>
<td>Figure 5.8</td>
<td>S.D. of Acceleration Response Spectrum (Horizontal Component Records with pkacc > 0.1g)</td>
<td>64</td>
</tr>
<tr>
<td>Figure 5.9</td>
<td>85% of Acceleration Response Spectrum (Horizontal Component Records with pkacc > 0.1g)</td>
<td>65</td>
</tr>
<tr>
<td>Figure 5.10</td>
<td>Average Acceleration Response Spectrum (Vertical Component Records with pkacc > 0.05g)</td>
<td>66</td>
</tr>
</tbody>
</table>
Figure 5.11 S.D. of Acceleration Response Spectrum (Vertical Component Records with pkacc > 0.05g) ... 67

Figure 5.12 85% of Acceleration Response Spectrum (Vertical Component Records with pkacc > 0.05g) ... 68

Figure 5.13 Average Velocity Response Spectrum (All Horizontal Component Records) 69

Figure 5.14 S.D. of Velocity Response Spectrum (All Horizontal Component Records) 70

Figure 5.15 85% of Velocity Response Spectrum (All Horizontal Component Records) 71

Figure 5.16 Average Velocity Response Spectrum (All Vertical Component Records) . 72

Figure 5.17 S.D. of Velocity Response Spectrum (All Vertical Component Records) . 73

Figure 5.18 85% of Velocity Response Spectrum (All Vertical Component Records) . 74

Figure 5.19 Average Velocity Response Spectrum (Horizontal Component Records with pkacc > 0.1g) ... 75

Figure 5.20 S.D. of Velocity Response Spectrum (Horizontal Component Records with pkacc > 0.1g) ... 76

Figure 5.21 85% of Velocity Response Spectrum (Horizontal Component Records with pkacc > 0.1g) ... 77

Figure 5.22 Average Velocity Response Spectrum (Vertical Component Records with pkacc > 0.05g) ... 78

Figure 5.23 S.D. of Velocity Response Spectrum (Vertical Component Records with pkacc > 0.05g) ... 79

Figure 5.24 85% of Velocity Response Spectrum (Vertical Component Records with pkacc > 0.05g) ... 80
Fig. 5.25 Average Acceleration Response Spectra for Japan and California
Earthquakes (after Hayashi et al. 1976) 81

Fig. 6.1 Average Acceleration Response Spectrum (All Horizontal Component
Records) ... 84

Fig. 6.2 85% of Acceleration Response Spectrum (All Horizontal Component
Records) ... 84

Fig. 6.3 Average Acceleration Response Spectrum (All Vertical Component
Records) ... 85

Fig. 6.4 85% of Acceleration Response Spectrum (All Vertical Component
Records) ... 85
ACKNOWLEDGEMENTS

The authors wish to thank the Alaska Department of Transportation and Public Facilities, Research Section for providing support for this work. The authors also wish to thank Mr's Keith Korri and Thomas Moses of the Anchorage office of the Alaska Department of Transportation and Public Facilities who acted as technical advisors to the project.
CHAPTER 1
INTRODUCTION

The primary tectonic feature in South–Central Alaska is the underthrusting (at a rate of about 5 to 6 cm/year in the northwest direction) of the Pacific Plate beneath the North American Plate. This phenomenon imparts stresses in the lithosphere which cause earthquakes along faults in the the overriding North American Plate, along the interface between the North American and Pacific Plates (Megathrust) and within the underthrusting Pacific Plate (Wadati–Benioff Zone).

Results of studies of regional and local seismicity, combined with attenuation relations, are usually expressed in the form of peak particle accelerations. These values of peak particle accelerations are multiplied by the ordinates of standardized response spectra to obtain response spectra for use in design. A response spectrum is defined as a graphical relationship of the maximum response of a single degree of freedom elastic system with damping to dynamic motion [Housner, 1970; Newmark, 1970; Newmark and Hall, 1973; Newmark and Hall, 1978; Newmark, Hall, and Mohraz, 1973; Newmark, Blume and Kapur, 1973; Nigam and Jennings, 1969].

Recent evidence indicates that characteristics of earthquake ground shaking (including response spectra derived from this shaking) at a given site depend on the characteristics of soil deposits underlying this site, earthquake source mechanism, earthquake magnitude, distance between earthquake source and site, and characteristics of travel path between source and site.

The current state of practice in the seismic design of bridge structures in the state of Alaska involves the use of standard response spectra. These spectra were
developed [Newmark et al., 1973; Seed et al., 1974 & 1976] using, mainly, acceleration time histories observed in California and accommodated for the influence of some of the factors indicated above. However, the earthquake generation mechanism associated with Alaska earthquakes differs from that associated with California earthquakes, and therefore (even when all other parameters influencing ground shaking characteristics are held constant) the corresponding ground motions have different characteristics.

This study is mainly concerned with compiling available strong motion records of Alaska Earthquakes; Correcting the uncorrected records using one of the available methods of earthquake record correction and providing a data bank of these corrected records; developing response spectra from each of these records; and grouping spectra depending on geology of instrument site and direction of shaking (vertical or horizontal) and developing normalized (both mean and 85%) vertical and horizontal response spectra from these groups. The number of groups depends on the availability of records on different representative sites [Seed et al, 1974 & 1976]. The components of this study are described in Chapters 2 through 7: in Chapter 2, the developed/implemented earthquake records correction and processing computer software is discussed. In Chapter 3, a compilation of the corrected Alaska earthquake records is presented. In Chapter 4, a discussion of response spectra and a presentation of the computed response spectra associated with the earthquakes of Chapter 3 is given. In Chapter 5, the computed standardized response spectra are discussed and in Chapter 6 the summary and conclusions of the study are presented.
CHAPTER 2

DATA CORRECTION AND PROCESSING SOFTWARE

Computer software for earthquake data correction and processing was developed/implemented for the purposes of this study. The developed software included programs to read earthquake acceleration time histories from magnetic tapes and write these histories in a format compatible with that required by the earthquake correction software, to plot uncorrected and corrected earthquake acceleration time histories, and to compute mean and 85 percentile response spectra. The implemented software mainly deals with correction of earthquake records and computation of response spectra. A brief description of both the developed and implemented software is given below.

I—DEVELOPED SOFTWARE

Developed software included programs to read earthquake acceleration time histories from magnetic tape and, write them in a format compatible with the earthquake correction software, and get their plots (acceleration versus time). Other developed programs were those used in the calculation of the mean and 85% response spectra. A more detailed description of the procedure used to compute the mean and 85th percentile response spectra is given in Chapter 5.

II—IMPLEMENTED SOFTWARE

The software "Basic Strong-Motion Accelerogram Processing Software" (BAP) was implemented for the purposes of correcting uncorrected earthquake
acceleration time histories and calculating response spectra associated with individual corrected earthquake records. This software was developed by the United States Geological Survey [Converse, 1992]. The main steps included in BAP and needed for earthquake time history correction and response spectra computation include: INPUT, INTERP, LINCOR, PAD, INSCOR, HICUT, DECIM, LOCUT, AVD, and RESPON. A brief description of each of these steps is given below [Converse, 1992].

INPUT

The INPUT step is a preprocessor that is used to read run parameters and input time histories. In this study, acceleration time histories were always used as input time histories.

INTERP

The INTERP step is used to linearly interpolate an unevenly-sampled input time series into an evenly-sampled one. This step is needed because all subsequent processing steps require an evenly sampled series.

LINCOR

The LINCOR step is used to subtract a straight line from the input time series. This step is needed in the processing of some digitized analog acceleration records so as to eliminate linear trends resulting from the digitization process.
PAD

The PAD step is used to extend a time series by adding leading and trailing zeros. This padding is needed for the HICUT and LOCUT filters.

INSCOR

The INSCOR step is used to correct the measured time series for errors introduced by the measuring accelerometers. These errors are usually introduced at high frequencies and are dependent on the damping and stiffness characteristics of the measuring device.

HICUT and LOCUT

The HICUT step is used to filter out spurious high frequencies from the time series being corrected while the LOCUT step is used to filter out spurious low frequencies.

AVD

The AVD step is used to calculate velocity and displacement time series (by integrating the corrected acceleration records) from a given acceleration time series, or to calculate acceleration and displacement time series from a given velocity time series.

FAS

The FAS step is used to compute the fourier amplitude spectrum of the acceleration time series.
RESPON

The RESPON step is used to calculate the response spectra for a given acceleration record. A more detailed discussion of response spectra is given in Chapter 4.
CHAPTER 3

ACCELERATION TIME HISTORIES FROM ALASKA EARTHQUAKES

The earthquake acceleration time histories collected for the purposes of this study were obtained from two sources. The first source provided data that was collected by Beaven and Jacobs [Beaven and Jacobs, 1984] and disseminated in the form of a magnetic tape. This data correspond to subduction zone Alaska earthquakes with 'significant' records (except for one strike slip event that occurred near Sitka on July 30, 1972) that took place between June 1964 and early 1983. This collection is restricted to earthquakes associated with the subduction zone that were recorded using free field, ground level or basement installed stations. A list of the earthquake recording stations from which measured acceleration time histories were obtained is given in Table 3–1 [Beaven and Jacobs, 1984]. The second source for earthquakes recorded at the same stations listed in Table 1 is a data bank developed and maintained by the National Center of Earthquake Engineering Research (NCEER) at the State University of New York at Buffalo. Records of earthquakes that were recorded between 1983 and 1993 were obtained from this source.

Plots of acceleration time histories (corrected) associated with the different earthquakes compiled for the purposes of this study are shown in Appendix A. Values of relevant parameters associated with these earthquakes are given in Tables 3–2 and 3–3. In Table 3–2, the earthquakes are grouped by recording station while in Table 3–3 they are grouped by event date. A brief description of plot headings as well as a description of the parameters included in Tables 3–2 and 3–3 is given
below [Beaven and Jacobs, 1983]. It is noted that the earthquake records were available in corrected form [Beaven and Jacobs, 1983; NCEER] and, for the most part, the procedure described in Chapter 2 was used to correct these records.

I— DESCRIPTION OF PLOT HEADINGS

The following is a brief description of plot headings associated with the different acceleration time histories of Appendix A [Beaven and Jacobs, 1983]:

Lines 1–2: Station Information
 Line 1: Station number, station code, and station location
 Line 2: Longitude and Latitude of station and a brief description of site geology.

Line 3: Component Information
 Line 3: Direction for which a positive ground acceleration would produce an upward deflection on the corresponding plot; and scale factor (SCL) by which the digitized scale was multiplied to convert from cm of trace deflection to units of g.

Lines 4–6: Earthquake Information
 Line 4: Origin time, UTC; Latitude and Longitude of epicenter and depth; Magnitude (MW); and maximum reported intensity (Modified Mercalli Scale).
 Line 5: Epicentral distance; and forward azimuth at station of rays from epicenter to station.
 Line 6: Peak ground Acceleration
Note that a ? indicates uncertainty; a * indicates AR–240 record with scale of 1/4 of original because of 1/4 reduction for digitization purposes, as opposed to a + which indicates a scale of 1.

II—EARTHQUAKE PARAMETERS

In the following, some information relevant to the different earthquake parameters included in Tables 3–2 and 3–3 is given [Beaven and Jacobs, 1983]:

— Distance refers to horizontal distance between station and epicenter. They do not necessarily correspond to minimum distance between rupture surface and recording station (sometimes more useful in determining empirical attenuation laws). These distances could be very different, especially for earthquakes with moment magnitudes larger than six.

— Under component, the Azimuths in degrees clockwise from North are given. Its is to be noted that polarity information associated with the various components of the strong ground motions are defined so as to refer to ground (and not pendulum) motions (positive values of accelerations represent ground motion in the indicated direction).

— Triggering information indicate whether instrument was triggered before the arrival of S–waves (BS), or sometime during (MS) the arrival of S–waves. It also indicates whether the instrument has triggered during in the coda, late after the wave has passed (L). In the Latter two cases (MS and L), peak values of ground motion associated with a given record of an earthquake are not necessarily the same as peak ground motions associated with that earthquake as the peak ground motion
could have occurred before the triggering of the instrument.

- Event near Sitka ($M_w = 7.5$) is strike-slip. Data included are limited to recordings from free-field, ground-level or basement-installed stations.

- Origin Time: the time origin of the events is accurate to the lowest minute (ignoring seconds) and is given in Universal Time.

- Hypocenter: The geometric Latitude and Longitude, in degrees, as well as the depth, in km, were compiled from a variety of sources.

- Magnitude: the uniform moment magnitude, M_w, is used. A more detailed description of how this value was calculated and of the moment magnitude scale is given in [Beaven and Jacobs, 1983; Kanamori, 1977; Hanks and Kanamori, 1979; Hanks and Boor, 1984].
<table>
<thead>
<tr>
<th>USGS Site Number</th>
<th>Letter Code</th>
<th>Locality</th>
<th>COORDINATES Lat°N Lon°W</th>
<th>Site Geology</th>
<th>Source/Operator Site Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2701</td>
<td>ADN</td>
<td>Adak</td>
<td>51.880 176.580</td>
<td>Basalt</td>
<td>GS Buried concrete vault, ground level</td>
</tr>
<tr>
<td>2702</td>
<td>AMU</td>
<td>Anchorage</td>
<td>61.189 149.801</td>
<td>Glacial Till, 120 M</td>
<td>GS Ground level, 2 story building</td>
</tr>
<tr>
<td>2703</td>
<td>ANH</td>
<td>Anchorage</td>
<td>61.190 149.890</td>
<td>Glacial outwash</td>
<td>GS Basement, 3 story building</td>
</tr>
<tr>
<td>2706</td>
<td>MES</td>
<td>Cordova</td>
<td>60.543 145.753</td>
<td>Metamorphic rock</td>
<td>GS Ground level, 2 story building</td>
</tr>
<tr>
<td>2710</td>
<td>KDN</td>
<td>Kodiak</td>
<td>57.750 152.490</td>
<td>Slate</td>
<td>GS Buried Concrete vault, ground level</td>
</tr>
<tr>
<td>2713</td>
<td>SWH</td>
<td>Seward</td>
<td>60.110 149.440</td>
<td>metamorphic rock</td>
<td>GS Basement, 1 story building</td>
</tr>
<tr>
<td>2714</td>
<td>SMO</td>
<td>Sitka</td>
<td>57.060 135.320</td>
<td>Graywacke</td>
<td>GS Buried concrete vault, ground level</td>
</tr>
<tr>
<td>2716</td>
<td>AWH</td>
<td>Anchorage</td>
<td>61.220 149.892</td>
<td>Glacial outwash</td>
<td>GS Basement, 22 story building</td>
</tr>
<tr>
<td>2719</td>
<td>SSG</td>
<td>Seldovia</td>
<td>59.440 151.710</td>
<td>Metamorphic rock</td>
<td>GS 1 story gym, ground level</td>
</tr>
<tr>
<td>2727</td>
<td>TLK</td>
<td>Takukena</td>
<td>62.300 150.100</td>
<td>No information</td>
<td>GS 1 story building, ground level</td>
</tr>
<tr>
<td>2728</td>
<td>YAK</td>
<td>Yakutat</td>
<td>59.510 139.650</td>
<td>Fill on muskeg; outwash</td>
<td>GS 1 story building, ground level</td>
</tr>
<tr>
<td>2734</td>
<td>ICY</td>
<td>Icy Bay</td>
<td>59.968 141.643</td>
<td>Glacial deposits</td>
<td>GS 1 story building, ground level</td>
</tr>
<tr>
<td>2739</td>
<td>KDS</td>
<td>Kodiak</td>
<td>57.750 152.500</td>
<td>No information</td>
<td>3 story reinforced concrete building; basement</td>
</tr>
<tr>
<td>2744</td>
<td>SAN</td>
<td>Sand Point</td>
<td>55.340 160.497</td>
<td>Volcanic breccia</td>
<td>LD Ground level 1 story building, pre-1977; concrete pier, seismic vault, post-1977</td>
</tr>
<tr>
<td>2764</td>
<td>SIM</td>
<td>Simeonof</td>
<td>54.920 159.258</td>
<td>2 m soil overlying granite bedrock</td>
<td>LD concrete slab; free field, ground level</td>
</tr>
<tr>
<td>2765</td>
<td>MDY</td>
<td>Munday Creek</td>
<td>60.023 141.966</td>
<td>rock of Yakataga formation</td>
<td>GS/Shell small metal box, ground level</td>
</tr>
<tr>
<td>2776</td>
<td>CNB</td>
<td>Chernabura</td>
<td>54.820 159.588</td>
<td>weathered granite bedrock</td>
<td>LD concrete slab; free field, ground level</td>
</tr>
<tr>
<td>2789</td>
<td>PRS</td>
<td>Pirate Shake</td>
<td>55.231 159.855</td>
<td>1 m of soil overlying tertiary metasediments</td>
<td>LD concrete slab; free field, ground level; close to edge of cliff</td>
</tr>
<tr>
<td>2101</td>
<td>OLY</td>
<td>Olympia</td>
<td>47.030 122.900</td>
<td>no information</td>
<td>GS Small prefab metal building; ground level</td>
</tr>
<tr>
<td>2773</td>
<td>BKJ</td>
<td>Big Koniuji</td>
<td>55.160 159.565</td>
<td>Bedrock -- Free field, concrete pad</td>
<td></td>
</tr>
<tr>
<td>2774</td>
<td>NGL</td>
<td>Nagai</td>
<td>55.039 160.069</td>
<td>Bedrock -- Concrete pad</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPTH (km)</th>
<th>DIST (km)</th>
<th>MOM MAG</th>
<th>COMP</th>
<th>PKACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
<td>N235</td>
<td>56.0</td>
<td>26.0</td>
<td>7.1</td>
<td>UP</td>
<td>89.05</td>
</tr>
<tr>
<td>2</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
<td>N235</td>
<td>56.0</td>
<td>26.0</td>
<td>7.1</td>
<td>N266E</td>
<td>-273.99</td>
</tr>
<tr>
<td>3</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
<td>N235</td>
<td>56.0</td>
<td>26.0</td>
<td>7.1</td>
<td>N176E</td>
<td>161.25</td>
</tr>
<tr>
<td>4</td>
<td>29APR1965</td>
<td>15:28</td>
<td>47.410N</td>
<td>122.290W</td>
<td>N227</td>
<td>63.0</td>
<td>63.0</td>
<td>6.7</td>
<td>UP</td>
<td>-60.08</td>
</tr>
<tr>
<td>5</td>
<td>29APR1965</td>
<td>15:28</td>
<td>47.410N</td>
<td>122.290W</td>
<td>N227</td>
<td>63.0</td>
<td>63.0</td>
<td>6.7</td>
<td>N266E</td>
<td>-194.76</td>
</tr>
<tr>
<td>6</td>
<td>29APR1965</td>
<td>15:28</td>
<td>47.410N</td>
<td>122.290W</td>
<td>N227</td>
<td>63.0</td>
<td>63.0</td>
<td>6.7</td>
<td>N176E</td>
<td>134.06</td>
</tr>
<tr>
<td>7</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
<td>N026</td>
<td>56.0</td>
<td>47.0</td>
<td>7.1</td>
<td>N182E</td>
<td>66.53</td>
</tr>
<tr>
<td>8</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
<td>N026</td>
<td>56.0</td>
<td>47.0</td>
<td>7.1</td>
<td>N272E</td>
<td>-66.06</td>
</tr>
<tr>
<td>9</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
<td>N026</td>
<td>56.0</td>
<td>47.0</td>
<td>7.1</td>
<td>UP</td>
<td>-22.00</td>
</tr>
<tr>
<td>10</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N180E</td>
<td>-114.65</td>
</tr>
<tr>
<td>11</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>UP</td>
<td>63.66</td>
</tr>
<tr>
<td>12</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N040</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>UP</td>
<td>-62.65</td>
</tr>
<tr>
<td>13</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N040</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N090E</td>
<td>183.65</td>
</tr>
<tr>
<td>14</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N090E</td>
<td>203.67</td>
</tr>
<tr>
<td>15</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N040</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N180E</td>
<td>93.14</td>
</tr>
<tr>
<td>16</td>
<td>13AUG1974</td>
<td>03:46</td>
<td>51.490N</td>
<td>178.110W</td>
<td>N068</td>
<td>47.0</td>
<td>114.0</td>
<td>6.1</td>
<td>N180E</td>
<td>-21.94</td>
</tr>
<tr>
<td>17</td>
<td>13AUG1974</td>
<td>03:46</td>
<td>51.490N</td>
<td>178.110W</td>
<td>N068</td>
<td>47.0</td>
<td>114.0</td>
<td>6.1</td>
<td>UP</td>
<td>-16.97</td>
</tr>
<tr>
<td>18</td>
<td>13AUG1974</td>
<td>03:46</td>
<td>51.490N</td>
<td>178.110W</td>
<td>N068</td>
<td>47.0</td>
<td>114.0</td>
<td>6.1</td>
<td>N090E</td>
<td>29.18</td>
</tr>
<tr>
<td>19</td>
<td>11NOV1974</td>
<td>05:17</td>
<td>51.590N</td>
<td>178.080W</td>
<td>N073</td>
<td>69.0</td>
<td>108.0</td>
<td>6.1</td>
<td>N090E</td>
<td>-45.72</td>
</tr>
<tr>
<td>20</td>
<td>11NOV1974</td>
<td>05:17</td>
<td>51.590N</td>
<td>178.080W</td>
<td>N073</td>
<td>69.0</td>
<td>108.0</td>
<td>6.1</td>
<td>UP</td>
<td>-23.95</td>
</tr>
<tr>
<td>21</td>
<td>11NOV1974</td>
<td>05:17</td>
<td>51.590N</td>
<td>178.080W</td>
<td>N073</td>
<td>69.0</td>
<td>108.0</td>
<td>6.1</td>
<td>N180E</td>
<td>-30.35</td>
</tr>
<tr>
<td>22</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>N180E</td>
<td>-27.69</td>
</tr>
<tr>
<td>23</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>UP</td>
<td>-22.95</td>
</tr>
<tr>
<td>24</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>N090E</td>
<td>65.70</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>--------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>25</td>
<td>5OCT1984</td>
<td>15:46</td>
<td>51.871N</td>
<td>176.016W</td>
<td>N090.5</td>
<td>68.0</td>
<td>43.2</td>
<td>5.2</td>
<td>N197E</td>
<td>31.79</td>
</tr>
<tr>
<td>26</td>
<td>5OCT1984</td>
<td>15:46</td>
<td>51.871N</td>
<td>176.016W</td>
<td>N090.5</td>
<td>68.0</td>
<td>43.2</td>
<td>5.2</td>
<td>N287E</td>
<td>32.90</td>
</tr>
<tr>
<td>27</td>
<td>5OCT1984</td>
<td>15:46</td>
<td>51.871N</td>
<td>176.016W</td>
<td>N090.5</td>
<td>68.0</td>
<td>43.2</td>
<td>5.2</td>
<td>UP</td>
<td>14.02</td>
</tr>
<tr>
<td>28</td>
<td>19NOV1984</td>
<td>12:07</td>
<td>51.777N</td>
<td>175.272W</td>
<td>N096.1</td>
<td>58.0</td>
<td>95.2</td>
<td>5.7</td>
<td>N287E</td>
<td>36.64</td>
</tr>
<tr>
<td>29</td>
<td>19NOV1984</td>
<td>12:07</td>
<td>51.777N</td>
<td>175.272W</td>
<td>N096.1</td>
<td>58.0</td>
<td>95.2</td>
<td>5.7</td>
<td>N197E</td>
<td>-43.02</td>
</tr>
<tr>
<td>30</td>
<td>19NOV1984</td>
<td>12:07</td>
<td>51.777N</td>
<td>175.272W</td>
<td>N096.1</td>
<td>58.0</td>
<td>95.2</td>
<td>5.7</td>
<td>UP</td>
<td>14.19</td>
</tr>
<tr>
<td>31</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.629N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>N197E</td>
<td>-48.85</td>
</tr>
<tr>
<td>32</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.629N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>UP</td>
<td>22.74</td>
</tr>
<tr>
<td>33</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.629N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>N287E</td>
<td>40.82</td>
</tr>
<tr>
<td>34</td>
<td>2MAR1986</td>
<td>20:42</td>
<td>51.348N</td>
<td>176.715W</td>
<td>N184.9</td>
<td>33.0</td>
<td>59.0</td>
<td>5</td>
<td>N287E</td>
<td>22.75</td>
</tr>
<tr>
<td>35</td>
<td>2MAR1986</td>
<td>20:42</td>
<td>51.348N</td>
<td>176.715W</td>
<td>N184.9</td>
<td>33.0</td>
<td>59.0</td>
<td>5</td>
<td>UP</td>
<td>-13.42</td>
</tr>
<tr>
<td>36</td>
<td>2MAR1986</td>
<td>20:42</td>
<td>51.348N</td>
<td>176.715W</td>
<td>N184.9</td>
<td>33.0</td>
<td>59.0</td>
<td>5</td>
<td>N197E</td>
<td>-25.37</td>
</tr>
<tr>
<td>37</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>N287E</td>
<td>-172.74</td>
</tr>
<tr>
<td>38</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>UP</td>
<td>100.32</td>
</tr>
<tr>
<td>39</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>N197E</td>
<td>223.18</td>
</tr>
<tr>
<td>40</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N183</td>
<td>58.0</td>
<td>81.0</td>
<td>6.0</td>
<td>N225E</td>
<td>91.98</td>
</tr>
<tr>
<td>41</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N183</td>
<td>58.0</td>
<td>81.0</td>
<td>6.0</td>
<td>UP</td>
<td>35.76</td>
</tr>
<tr>
<td>42</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N183</td>
<td>58.0</td>
<td>81.0</td>
<td>6.0</td>
<td>N315E</td>
<td>60.58</td>
</tr>
<tr>
<td>43</td>
<td>30DEC1985</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>N270E</td>
<td>77.41</td>
</tr>
<tr>
<td>44</td>
<td>30DEC1985</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>UP</td>
<td>16.73</td>
</tr>
<tr>
<td>45</td>
<td>30DEC1985</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>N360E</td>
<td>71.53</td>
</tr>
<tr>
<td>46</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>82.0</td>
<td>6.0</td>
<td>N000E</td>
<td>-74.77</td>
</tr>
<tr>
<td>47</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>82.0</td>
<td>6.0</td>
<td>UP</td>
<td>-48.48</td>
</tr>
<tr>
<td>48</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>82.0</td>
<td>6.0</td>
<td>N270E</td>
<td>-86.98</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>49</td>
<td>5JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
<td>N017</td>
<td>16.0</td>
<td>22.0</td>
<td>5.2</td>
<td>N196E</td>
<td>34.18</td>
</tr>
<tr>
<td>50</td>
<td>5JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
<td>N017</td>
<td>16.0</td>
<td>22.0</td>
<td>5.2</td>
<td>UP</td>
<td>-11.55</td>
</tr>
<tr>
<td>51</td>
<td>5JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
<td>N017</td>
<td>16.0</td>
<td>22.0</td>
<td>5.2</td>
<td>N286E</td>
<td>-29.95</td>
</tr>
<tr>
<td>52</td>
<td>5JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
<td>N203</td>
<td>13.0</td>
<td>47.0</td>
<td>5.0</td>
<td>N180E</td>
<td>-20.39</td>
</tr>
<tr>
<td>53</td>
<td>5JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
<td>N203</td>
<td>13.0</td>
<td>47.0</td>
<td>5.0</td>
<td>UP</td>
<td>-13.84</td>
</tr>
<tr>
<td>54</td>
<td>5JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
<td>N203</td>
<td>13.0</td>
<td>47.0</td>
<td>5.0</td>
<td>N270E</td>
<td>-28.88</td>
</tr>
<tr>
<td>55</td>
<td>4SEP1965</td>
<td>14:32</td>
<td>58.290N</td>
<td>152.500W</td>
<td>N180</td>
<td>32.0</td>
<td>60.0</td>
<td>6.8</td>
<td>N260E</td>
<td>21.54</td>
</tr>
<tr>
<td>56</td>
<td>4SEP1965</td>
<td>14:32</td>
<td>58.290N</td>
<td>152.500W</td>
<td>N180</td>
<td>32.0</td>
<td>60.0</td>
<td>6.8</td>
<td>UP</td>
<td>-15.55</td>
</tr>
<tr>
<td>57</td>
<td>4SEP1965</td>
<td>14:32</td>
<td>58.290N</td>
<td>152.500W</td>
<td>N180</td>
<td>32.0</td>
<td>60.0</td>
<td>6.8</td>
<td>N350E</td>
<td>-16.70</td>
</tr>
<tr>
<td>58</td>
<td>22DEC1965</td>
<td>19:41</td>
<td>58.350N</td>
<td>153.130W</td>
<td>N151</td>
<td>42.0</td>
<td>77.0</td>
<td>6.8</td>
<td>N260E</td>
<td>-37.95</td>
</tr>
<tr>
<td>59</td>
<td>22DEC1965</td>
<td>19:41</td>
<td>58.350N</td>
<td>153.130W</td>
<td>N151</td>
<td>42.0</td>
<td>77.0</td>
<td>6.8</td>
<td>UP</td>
<td>-14.93</td>
</tr>
<tr>
<td>60</td>
<td>22DEC1965</td>
<td>19:41</td>
<td>58.350N</td>
<td>153.130W</td>
<td>N151</td>
<td>42.0</td>
<td>77.0</td>
<td>6.8</td>
<td>N350E</td>
<td>36.09</td>
</tr>
<tr>
<td>61</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N093</td>
<td>82.0</td>
<td>188.0</td>
<td>6.3</td>
<td>N000E</td>
<td>37.28</td>
</tr>
<tr>
<td>62</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N093</td>
<td>82.0</td>
<td>188.0</td>
<td>6.3</td>
<td>UP</td>
<td>-26.03</td>
</tr>
<tr>
<td>63</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N093</td>
<td>82.0</td>
<td>188.0</td>
<td>6.3</td>
<td>N090E</td>
<td>21.97</td>
</tr>
<tr>
<td>64</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>N180E</td>
<td>76.50</td>
</tr>
<tr>
<td>65</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>UP</td>
<td>-51.54</td>
</tr>
<tr>
<td>66</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>N090E</td>
<td>89.40</td>
</tr>
<tr>
<td>67</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N187</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>N045E</td>
<td>44.91</td>
</tr>
<tr>
<td>68</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N187</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>UP</td>
<td>-19.62</td>
</tr>
<tr>
<td>69</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N187</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>N135E</td>
<td>49.15</td>
</tr>
<tr>
<td>70</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>UP</td>
<td>17.19</td>
</tr>
<tr>
<td>71</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>N090E</td>
<td>26.43</td>
</tr>
<tr>
<td>72</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>N000E</td>
<td>-40.52</td>
</tr>
</tbody>
</table>
Table 3-2 (continued)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPTH (km)</th>
<th>DIST (km)</th>
<th>MOM MAG</th>
<th>COMP</th>
<th>PKACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>73</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>N075E</td>
<td>74.95</td>
</tr>
<tr>
<td>74</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>UP</td>
<td>-87.69</td>
</tr>
<tr>
<td>75</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>N165E</td>
<td>-72.35</td>
</tr>
<tr>
<td>76</td>
<td>5MAY1978</td>
<td>05:33</td>
<td>63.302N</td>
<td>150.971W</td>
<td>N338.7</td>
<td>134.0</td>
<td>120.4</td>
<td>5.1</td>
<td>UP</td>
<td>10.11</td>
</tr>
<tr>
<td>77</td>
<td>5MAY1978</td>
<td>05:33</td>
<td>63.302N</td>
<td>150.971W</td>
<td>N338.7</td>
<td>134.0</td>
<td>120.4</td>
<td>5.1</td>
<td>N075E</td>
<td>11.72</td>
</tr>
<tr>
<td>78</td>
<td>5MAY1978</td>
<td>05:33</td>
<td>63.302N</td>
<td>150.971W</td>
<td>N338.7</td>
<td>134.0</td>
<td>120.4</td>
<td>5.1</td>
<td>N165E</td>
<td>7.32</td>
</tr>
<tr>
<td>79</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>UP</td>
<td>-24.36</td>
</tr>
<tr>
<td>80</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>N279E</td>
<td>-60.81</td>
</tr>
<tr>
<td>81</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>N009E</td>
<td>81.33</td>
</tr>
<tr>
<td>82</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>UP</td>
<td>62.90</td>
</tr>
<tr>
<td>83</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>N180E</td>
<td>-171.41</td>
</tr>
<tr>
<td>84</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>N090E</td>
<td>-96.33</td>
</tr>
<tr>
<td>85</td>
<td>11MAR1970</td>
<td>22:38</td>
<td>57.390N</td>
<td>153.970W</td>
<td>N066</td>
<td>38.0</td>
<td>97.0</td>
<td>6.3</td>
<td>UP</td>
<td>8.59</td>
</tr>
<tr>
<td>86</td>
<td>11MAR1970</td>
<td>22:38</td>
<td>57.390N</td>
<td>153.970W</td>
<td>N066</td>
<td>38.0</td>
<td>97.0</td>
<td>6.3</td>
<td>N260E</td>
<td>42.05</td>
</tr>
<tr>
<td>88</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>N030E</td>
<td>91.62</td>
</tr>
<tr>
<td>89</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>UP</td>
<td>51.44</td>
</tr>
<tr>
<td>90</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>N120E</td>
<td>75.33</td>
</tr>
<tr>
<td>91</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>N030E</td>
<td>117.77</td>
</tr>
<tr>
<td>92</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>UP</td>
<td>-48.37</td>
</tr>
<tr>
<td>93</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>N120E</td>
<td>-98.30</td>
</tr>
<tr>
<td>94</td>
<td>25JUL1975</td>
<td>10:40</td>
<td>55.040N</td>
<td>160.410W</td>
<td>N353</td>
<td>38.0</td>
<td>34.0</td>
<td>5.6</td>
<td>UP</td>
<td>11.75</td>
</tr>
<tr>
<td>95</td>
<td>25JUL1975</td>
<td>10:40</td>
<td>55.040N</td>
<td>160.410W</td>
<td>N353</td>
<td>38.0</td>
<td>34.0</td>
<td>5.6</td>
<td>N030E</td>
<td>-12.79</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>97</td>
<td>27JAN1979</td>
<td>18:57</td>
<td>54.790N</td>
<td>160.640W</td>
<td>N009</td>
<td>53.0</td>
<td>62.0</td>
<td>6.2</td>
<td>N107E</td>
<td>9.18</td>
</tr>
<tr>
<td>98</td>
<td>27JAN1979</td>
<td>18:57</td>
<td>54.790N</td>
<td>160.640W</td>
<td>N009</td>
<td>53.0</td>
<td>62.0</td>
<td>6.2</td>
<td>UP</td>
<td>8.01</td>
</tr>
<tr>
<td>99</td>
<td>27JAN1979</td>
<td>18:57</td>
<td>54.790N</td>
<td>160.640W</td>
<td>N009</td>
<td>53.0</td>
<td>62.0</td>
<td>6.2</td>
<td>N197E</td>
<td>7.59</td>
</tr>
<tr>
<td>100</td>
<td>13FEB1979</td>
<td>05:34</td>
<td>55.170N</td>
<td>156.940W</td>
<td>N273</td>
<td>47.0</td>
<td>226.0</td>
<td>6.5</td>
<td>UP</td>
<td>9.80</td>
</tr>
<tr>
<td>101</td>
<td>13FEB1979</td>
<td>05:34</td>
<td>55.170N</td>
<td>156.940W</td>
<td>N273</td>
<td>47.0</td>
<td>226.0</td>
<td>6.5</td>
<td>N107E</td>
<td>-41.37</td>
</tr>
<tr>
<td>102</td>
<td>13FEB1979</td>
<td>05:34</td>
<td>55.170N</td>
<td>156.940W</td>
<td>N273</td>
<td>47.0</td>
<td>226.0</td>
<td>6.5</td>
<td>N197E</td>
<td>22.42</td>
</tr>
<tr>
<td>103</td>
<td>28DEC1981</td>
<td>10:28</td>
<td>54.669N</td>
<td>160.407W</td>
<td>N357</td>
<td>33.0</td>
<td>75.0</td>
<td>3.8</td>
<td>N070E</td>
<td>-18.41</td>
</tr>
<tr>
<td>104</td>
<td>28DEC1981</td>
<td>10:28</td>
<td>54.669N</td>
<td>160.407W</td>
<td>N357</td>
<td>33.0</td>
<td>75.0</td>
<td>3.8</td>
<td>N340E</td>
<td>-24.08</td>
</tr>
<tr>
<td>105</td>
<td>28DEC1981</td>
<td>10:28</td>
<td>54.669N</td>
<td>160.407W</td>
<td>N357</td>
<td>33.0</td>
<td>75.0</td>
<td>3.8</td>
<td>UP</td>
<td>-5.58</td>
</tr>
<tr>
<td>106</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N303</td>
<td>25.0</td>
<td>123.0</td>
<td>6.3</td>
<td>N160E</td>
<td>6.72</td>
</tr>
<tr>
<td>107</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N303</td>
<td>25.0</td>
<td>123.0</td>
<td>6.3</td>
<td>UP</td>
<td>5.22</td>
</tr>
<tr>
<td>108</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N303</td>
<td>25.0</td>
<td>123.0</td>
<td>6.3</td>
<td>N250E</td>
<td>7.55</td>
</tr>
<tr>
<td>109</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N297</td>
<td>25.0</td>
<td>118.0</td>
<td>6.0</td>
<td>N160E</td>
<td>-3.93</td>
</tr>
<tr>
<td>110</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N297</td>
<td>25.0</td>
<td>118.0</td>
<td>6.0</td>
<td>UP</td>
<td>-2.72</td>
</tr>
<tr>
<td>111</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N297</td>
<td>25.0</td>
<td>118.0</td>
<td>6.0</td>
<td>N250E</td>
<td>-5.71</td>
</tr>
<tr>
<td>112</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N144.7</td>
<td>28.0</td>
<td>85.9</td>
<td>4.4</td>
<td>UP</td>
<td>-12.00</td>
</tr>
<tr>
<td>113</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N144.7</td>
<td>28.0</td>
<td>85.9</td>
<td>4.4</td>
<td>N070E</td>
<td>-17.69</td>
</tr>
<tr>
<td>114</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N144.7</td>
<td>28.0</td>
<td>85.9</td>
<td>4.4</td>
<td>N340E</td>
<td>22.84</td>
</tr>
<tr>
<td>115</td>
<td>2JUN1989</td>
<td>15:57</td>
<td>55.145N</td>
<td>160.592W</td>
<td>N195.6</td>
<td>58.0</td>
<td>22.6</td>
<td>--</td>
<td>N000E</td>
<td>--</td>
</tr>
<tr>
<td>116</td>
<td>2JUN1989</td>
<td>15:57</td>
<td>55.145N</td>
<td>160.592W</td>
<td>N195.6</td>
<td>58.0</td>
<td>22.6</td>
<td>--</td>
<td>UP</td>
<td>--</td>
</tr>
<tr>
<td>117</td>
<td>2JUN1989</td>
<td>15:57</td>
<td>55.145N</td>
<td>160.592W</td>
<td>N195.6</td>
<td>58.0</td>
<td>22.6</td>
<td>--</td>
<td>N090E</td>
<td>--</td>
</tr>
<tr>
<td>118</td>
<td>4SEP1989</td>
<td>13:14</td>
<td>55.543N</td>
<td>156.835W</td>
<td>N082.9</td>
<td>11.0</td>
<td>233.1</td>
<td>--</td>
<td>N000E</td>
<td>--</td>
</tr>
<tr>
<td>119</td>
<td>4SEP1989</td>
<td>13:14</td>
<td>55.543N</td>
<td>156.835W</td>
<td>N082.9</td>
<td>11.0</td>
<td>233.1</td>
<td>--</td>
<td>UP</td>
<td>--</td>
</tr>
<tr>
<td>120</td>
<td>4SEP1989</td>
<td>13:14</td>
<td>55.543N</td>
<td>156.835W</td>
<td>N082.9</td>
<td>11.0</td>
<td>233.1</td>
<td>--</td>
<td>N090E</td>
<td>--</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>121</td>
<td>21OCT1989</td>
<td>19:24</td>
<td>55.107N</td>
<td>160.107W</td>
<td>N136.1</td>
<td>10.4</td>
<td>35.9</td>
<td>--</td>
<td>N000E</td>
<td>--</td>
</tr>
<tr>
<td>122</td>
<td>21OCT1989</td>
<td>19:24</td>
<td>55.107N</td>
<td>160.107W</td>
<td>N136.1</td>
<td>10.4</td>
<td>35.9</td>
<td>--</td>
<td>UP</td>
<td>--</td>
</tr>
<tr>
<td>123</td>
<td>21OCT1989</td>
<td>19:24</td>
<td>55.107N</td>
<td>160.107W</td>
<td>N136.1</td>
<td>10.4</td>
<td>35.9</td>
<td>--</td>
<td>N090E</td>
<td>--</td>
</tr>
<tr>
<td>124</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>N340E</td>
<td>55.55</td>
</tr>
<tr>
<td>125</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>N070E</td>
<td>29.87</td>
</tr>
<tr>
<td>126</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>UP</td>
<td>-19.97</td>
</tr>
<tr>
<td>127</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>N340E</td>
<td>40.53</td>
</tr>
<tr>
<td>128</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>UP</td>
<td>-15.40</td>
</tr>
<tr>
<td>129</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>N070E</td>
<td>-27.88</td>
</tr>
<tr>
<td>130</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N197</td>
<td>13.0</td>
<td>72.0</td>
<td>7.3</td>
<td>N270E</td>
<td>-40.84</td>
</tr>
<tr>
<td>131</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N197</td>
<td>13.0</td>
<td>72.0</td>
<td>7.3</td>
<td>N000E</td>
<td>62.81</td>
</tr>
<tr>
<td>132</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>N345E</td>
<td>49.04</td>
</tr>
<tr>
<td>133</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>UP</td>
<td>-39.87</td>
</tr>
<tr>
<td>134</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>N065E</td>
<td>-34.39</td>
</tr>
<tr>
<td>135</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>N075E</td>
<td>-28.61</td>
</tr>
<tr>
<td>136</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>N345E</td>
<td>-25.08</td>
</tr>
<tr>
<td>137</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>UP</td>
<td>15.65</td>
</tr>
<tr>
<td>138</td>
<td>21MAY1985</td>
<td>01:13</td>
<td>54.978N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>N340E</td>
<td>38.26</td>
</tr>
<tr>
<td>139</td>
<td>21MAY1985</td>
<td>01:13</td>
<td>54.978N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>UP</td>
<td>20.46</td>
</tr>
<tr>
<td>140</td>
<td>21MAY1985</td>
<td>01:13</td>
<td>54.978N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>N250E</td>
<td>23.39</td>
</tr>
<tr>
<td>141</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>N267E</td>
<td>-35.11</td>
</tr>
<tr>
<td>142</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>N357E</td>
<td>-21.35</td>
</tr>
<tr>
<td>143</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>UP</td>
<td>15.27</td>
</tr>
<tr>
<td>144</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>N070E</td>
<td>46.92</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec^2)</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>145</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>UP</td>
<td>-22.89</td>
</tr>
<tr>
<td>146</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>N340E</td>
<td>40.49</td>
</tr>
<tr>
<td>147</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N265</td>
<td>25.0</td>
<td>48.0</td>
<td>6.0</td>
<td>UP</td>
<td>-16.60</td>
</tr>
<tr>
<td>148</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N265</td>
<td>25.0</td>
<td>48.0</td>
<td>6.0</td>
<td>N340E</td>
<td>20.23</td>
</tr>
<tr>
<td>149</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N265</td>
<td>25.0</td>
<td>48.0</td>
<td>6.0</td>
<td>N070E</td>
<td>16.69</td>
</tr>
<tr>
<td>150</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N216.0</td>
<td>28.0</td>
<td>15.3</td>
<td>4.4</td>
<td>N073E</td>
<td>-8.19</td>
</tr>
<tr>
<td>151</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N216.0</td>
<td>28.0</td>
<td>15.3</td>
<td>4.4</td>
<td>N343E</td>
<td>-14.70</td>
</tr>
<tr>
<td>152</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N216.0</td>
<td>28.0</td>
<td>15.3</td>
<td>4.4</td>
<td>UP</td>
<td>6.82</td>
</tr>
<tr>
<td>153</td>
<td>9OCT1985</td>
<td>14:16</td>
<td>54.812N</td>
<td>159.466W</td>
<td>N096.7</td>
<td>20.0</td>
<td>7.9</td>
<td>4.5</td>
<td>UP</td>
<td>6.50</td>
</tr>
<tr>
<td>154</td>
<td>9OCT1985</td>
<td>14:16</td>
<td>54.812N</td>
<td>159.466W</td>
<td>N096.7</td>
<td>20.0</td>
<td>7.9</td>
<td>4.5</td>
<td>N343E</td>
<td>-8.78</td>
</tr>
<tr>
<td>155</td>
<td>9OCT1985</td>
<td>14:16</td>
<td>54.812N</td>
<td>159.466W</td>
<td>N096.7</td>
<td>20.0</td>
<td>7.9</td>
<td>4.5</td>
<td>N073E</td>
<td>5.07</td>
</tr>
<tr>
<td>156</td>
<td>14NOV1985</td>
<td>22:18</td>
<td>54.684N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>UP</td>
<td>-16.91</td>
</tr>
<tr>
<td>157</td>
<td>14NOV1985</td>
<td>22:18</td>
<td>54.684N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>N073E</td>
<td>21.59</td>
</tr>
<tr>
<td>158</td>
<td>14NOV1985</td>
<td>22:18</td>
<td>54.684N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>N343E</td>
<td>-25.04</td>
</tr>
<tr>
<td>159</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N263.4</td>
<td>28.0</td>
<td>19.2</td>
<td>5.3</td>
<td>N343E</td>
<td>-26.01</td>
</tr>
<tr>
<td>160</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N263.4</td>
<td>28.0</td>
<td>19.2</td>
<td>5.3</td>
<td>N073E</td>
<td>54.30</td>
</tr>
<tr>
<td>161</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N263.4</td>
<td>28.0</td>
<td>19.2</td>
<td>5.3</td>
<td>UP</td>
<td>-22.27</td>
</tr>
<tr>
<td>162</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N311</td>
<td>25.0</td>
<td>83.0</td>
<td>6.3</td>
<td>N342E</td>
<td>-24.46</td>
</tr>
<tr>
<td>163</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N311</td>
<td>25.0</td>
<td>83.0</td>
<td>6.3</td>
<td>UP</td>
<td>-5.72</td>
</tr>
<tr>
<td>164</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N311</td>
<td>25.0</td>
<td>83.0</td>
<td>6.3</td>
<td>N072E</td>
<td>11.94</td>
</tr>
<tr>
<td>165</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N303</td>
<td>25.0</td>
<td>77.0</td>
<td>6.0</td>
<td>N342E</td>
<td>-13.64</td>
</tr>
<tr>
<td>166</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N303</td>
<td>25.0</td>
<td>77.0</td>
<td>6.0</td>
<td>UP</td>
<td>10.79</td>
</tr>
<tr>
<td>167</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N303</td>
<td>25.0</td>
<td>77.0</td>
<td>6.0</td>
<td>N072E</td>
<td>14.78</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0790</td>
<td>0.5920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0770</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0810</td>
<td>0.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2170</td>
<td>SFSS</td>
<td>0.0810</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2170</td>
<td>SFSS</td>
<td>0.0820</td>
<td>0.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2170</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0530</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0560</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>2702</td>
<td>--</td>
<td>0.0390</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>2702</td>
<td>--</td>
<td>0.0390</td>
<td>0.6000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>2702</td>
<td>--</td>
<td>0.0370</td>
<td>0.5800</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>2703</td>
<td>AR-240</td>
<td>0.0580</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>2703</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>2703</td>
<td>AR-240</td>
<td>0.0590</td>
<td>0.6200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3-2 (continued)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>50</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.6100</td>
</tr>
<tr>
<td>51</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>52</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.6100</td>
</tr>
<tr>
<td>53</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
</tr>
<tr>
<td>54</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.6100</td>
</tr>
<tr>
<td>55</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0512</td>
<td>0.4000</td>
</tr>
<tr>
<td>56</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0495</td>
<td>0.5700</td>
</tr>
<tr>
<td>57</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0505</td>
<td>0.5900</td>
</tr>
<tr>
<td>58</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0517</td>
<td>0.4300</td>
</tr>
<tr>
<td>59</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0516</td>
<td>0.6300</td>
</tr>
<tr>
<td>60</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0512</td>
<td>0.6400</td>
</tr>
<tr>
<td>61</td>
<td>2713</td>
<td>AR-240</td>
<td>0.0585</td>
<td>0.5000</td>
</tr>
<tr>
<td>62</td>
<td>2713</td>
<td>AR-240</td>
<td>0.0585</td>
<td>0.5900</td>
</tr>
<tr>
<td>63</td>
<td>2713</td>
<td>AR-240</td>
<td>0.0565</td>
<td>0.5600</td>
</tr>
<tr>
<td>64</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
</tr>
<tr>
<td>65</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0570</td>
<td>0.6100</td>
</tr>
<tr>
<td>66</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0490</td>
<td>0.5700</td>
</tr>
<tr>
<td>67</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5700</td>
</tr>
<tr>
<td>68</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5300</td>
</tr>
<tr>
<td>69</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5500</td>
</tr>
<tr>
<td>70</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0631</td>
<td>0.5500</td>
</tr>
<tr>
<td>71</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0523</td>
<td>0.5800</td>
</tr>
<tr>
<td>72</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0626</td>
<td>0.5700</td>
</tr>
<tr>
<td>73</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>74</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>75</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>76</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>77</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>78</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>79</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>80</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5900</td>
</tr>
<tr>
<td>81</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5900</td>
</tr>
<tr>
<td>82</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5700</td>
</tr>
<tr>
<td>83</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.6100</td>
</tr>
<tr>
<td>84</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6100</td>
</tr>
<tr>
<td>85</td>
<td>2739</td>
<td>AR-240</td>
<td>0.0542</td>
<td>0.5900</td>
</tr>
<tr>
<td>86</td>
<td>2739</td>
<td>AR-240</td>
<td>0.0525</td>
<td>0.5800</td>
</tr>
<tr>
<td>87</td>
<td>2739</td>
<td>AR-240</td>
<td>0.0519</td>
<td>0.5800</td>
</tr>
<tr>
<td>88</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>89</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>90</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>91</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>92</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>93</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>94</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>95</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>96</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>97</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>98</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>99</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>100</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>101</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>102</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>103</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0581</td>
<td>0.6000</td>
</tr>
<tr>
<td>104</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0578</td>
<td>0.6000</td>
</tr>
<tr>
<td>105</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0562</td>
<td>0.6000</td>
</tr>
<tr>
<td>106</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0193</td>
<td>0.6300</td>
</tr>
<tr>
<td>107</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6600</td>
</tr>
<tr>
<td>108</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6500</td>
</tr>
<tr>
<td>109</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0193</td>
<td>0.6300</td>
</tr>
<tr>
<td>110</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6600</td>
</tr>
<tr>
<td>111</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6500</td>
</tr>
<tr>
<td>112</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0357</td>
<td>0.5300</td>
</tr>
<tr>
<td>113</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5500</td>
</tr>
<tr>
<td>114</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0397</td>
<td>0.5700</td>
</tr>
<tr>
<td>115</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>116</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>117</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>118</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>119</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>120</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>122</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>123</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>124</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>125</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>126</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>127</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>128</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>129</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>130</td>
<td>2765</td>
<td>SMA-1</td>
<td>0.0769</td>
<td>0.6000</td>
</tr>
<tr>
<td>131</td>
<td>2765</td>
<td>SMA-1</td>
<td>0.0781</td>
<td>0.6000</td>
</tr>
<tr>
<td>132</td>
<td>2773</td>
<td>--</td>
<td>0.0386</td>
<td>0.6500</td>
</tr>
<tr>
<td>133</td>
<td>2773</td>
<td>--</td>
<td>0.0373</td>
<td>0.6150</td>
</tr>
<tr>
<td>134</td>
<td>2773</td>
<td>--</td>
<td>0.0401</td>
<td>0.6150</td>
</tr>
<tr>
<td>135</td>
<td>2773</td>
<td>--</td>
<td>0.0369</td>
<td>0.6200</td>
</tr>
<tr>
<td>136</td>
<td>2773</td>
<td>--</td>
<td>0.0398</td>
<td>0.6350</td>
</tr>
<tr>
<td>137</td>
<td>2773</td>
<td>--</td>
<td>0.0357</td>
<td>0.5800</td>
</tr>
<tr>
<td>138</td>
<td>2774</td>
<td>--</td>
<td>0.0396</td>
<td>0.6100</td>
</tr>
<tr>
<td>139</td>
<td>2774</td>
<td>--</td>
<td>0.0383</td>
<td>0.6000</td>
</tr>
<tr>
<td>140</td>
<td>2774</td>
<td>--</td>
<td>0.0388</td>
<td>0.6200</td>
</tr>
<tr>
<td>141</td>
<td>2774</td>
<td>--</td>
<td>0.0405</td>
<td>0.5850</td>
</tr>
<tr>
<td>142</td>
<td>2774</td>
<td>--</td>
<td>0.0389</td>
<td>0.5600</td>
</tr>
<tr>
<td>143</td>
<td>2774</td>
<td>--</td>
<td>0.0391</td>
<td>0.5600</td>
</tr>
<tr>
<td>144</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>145</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>146</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0360</td>
<td>0.6000</td>
</tr>
<tr>
<td>147</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>148</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0360</td>
<td>0.6000</td>
</tr>
<tr>
<td>149</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>150</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0543</td>
<td>0.6100</td>
</tr>
<tr>
<td>151</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0529</td>
<td>0.5900</td>
</tr>
<tr>
<td>152</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0514</td>
<td>0.5700</td>
</tr>
<tr>
<td>153</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0514</td>
<td>0.5700</td>
</tr>
<tr>
<td>154</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0529</td>
<td>0.5900</td>
</tr>
<tr>
<td>155</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0543</td>
<td>0.6100</td>
</tr>
<tr>
<td>156</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0513</td>
<td>0.5600</td>
</tr>
<tr>
<td>157</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0541</td>
<td>0.5900</td>
</tr>
<tr>
<td>158</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0524</td>
<td>0.5800</td>
</tr>
<tr>
<td>159</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0515</td>
<td>0.5400</td>
</tr>
<tr>
<td>160</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0600</td>
<td>0.2400</td>
</tr>
<tr>
<td>161</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0552</td>
<td>0.5450</td>
</tr>
<tr>
<td>162</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0560</td>
<td>0.6000</td>
</tr>
<tr>
<td>163</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0510</td>
<td>0.6000</td>
</tr>
<tr>
<td>164</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0540</td>
<td>0.6000</td>
</tr>
<tr>
<td>165</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0560</td>
<td>0.6000</td>
</tr>
<tr>
<td>166</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0510</td>
<td>0.6000</td>
</tr>
<tr>
<td>167</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0540</td>
<td>0.6000</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
</tr>
<tr>
<td>2</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
</tr>
<tr>
<td>3</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
</tr>
<tr>
<td>4</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
</tr>
<tr>
<td>5</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
</tr>
<tr>
<td>6</td>
<td>13APR1949</td>
<td>19:55</td>
<td>47.167N</td>
<td>122.617W</td>
</tr>
<tr>
<td>7</td>
<td>5JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
</tr>
<tr>
<td>8</td>
<td>5JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
</tr>
<tr>
<td>9</td>
<td>5JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
</tr>
<tr>
<td>10</td>
<td>5JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
</tr>
<tr>
<td>11</td>
<td>5JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
</tr>
<tr>
<td>12</td>
<td>5JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
</tr>
<tr>
<td>13</td>
<td>29APR1965</td>
<td>15:28</td>
<td>47.410N</td>
<td>122.290W</td>
</tr>
<tr>
<td>14</td>
<td>29APR1965</td>
<td>15:28</td>
<td>47.410N</td>
<td>122.290W</td>
</tr>
<tr>
<td>15</td>
<td>29APR1965</td>
<td>15:28</td>
<td>47.410N</td>
<td>122.290W</td>
</tr>
<tr>
<td>16</td>
<td>4SEP1965</td>
<td>14:32</td>
<td>58.290N</td>
<td>152.500W</td>
</tr>
<tr>
<td>17</td>
<td>4SEP1965</td>
<td>14:32</td>
<td>58.290N</td>
<td>152.500W</td>
</tr>
<tr>
<td>18</td>
<td>4SEP1965</td>
<td>14:32</td>
<td>58.290N</td>
<td>152.500W</td>
</tr>
<tr>
<td>19</td>
<td>22DEC1965</td>
<td>19:41</td>
<td>58.350N</td>
<td>153.130W</td>
</tr>
<tr>
<td>20</td>
<td>22DEC1965</td>
<td>19:41</td>
<td>58.350N</td>
<td>153.130W</td>
</tr>
<tr>
<td>21</td>
<td>22DEC1965</td>
<td>19:41</td>
<td>58.350N</td>
<td>153.130W</td>
</tr>
<tr>
<td>22</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
</tr>
<tr>
<td>23</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
</tr>
<tr>
<td>24</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
</tr>
</tbody>
</table>
Table 3-3 (continued)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPTH (km)</th>
<th>DIST (km)</th>
<th>MOM MAG</th>
<th>COMP</th>
<th>PKACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>N000E</td>
<td>-40.52</td>
</tr>
<tr>
<td>26</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>UP</td>
<td>17.19</td>
</tr>
<tr>
<td>27</td>
<td>17DEC1968</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>N090E</td>
<td>26.43</td>
</tr>
<tr>
<td>28</td>
<td>11MAR1970</td>
<td>22:38</td>
<td>57.390N</td>
<td>153.970W</td>
<td>N066</td>
<td>38.0</td>
<td>97.0</td>
<td>6.3</td>
<td>N260E</td>
<td>42.05</td>
</tr>
<tr>
<td>29</td>
<td>11MAR1970</td>
<td>22:38</td>
<td>57.390N</td>
<td>153.970W</td>
<td>N066</td>
<td>38.0</td>
<td>97.0</td>
<td>6.3</td>
<td>UP</td>
<td>8.59</td>
</tr>
<tr>
<td>31</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N040</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N180E</td>
<td>93.14</td>
</tr>
<tr>
<td>32</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N040</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>UP</td>
<td>-62.65</td>
</tr>
<tr>
<td>33</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N040</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N090E</td>
<td>183.65</td>
</tr>
<tr>
<td>34</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N180E</td>
<td>-114.65</td>
</tr>
<tr>
<td>35</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>UP</td>
<td>63.66</td>
</tr>
<tr>
<td>36</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N090E</td>
<td>203.67</td>
</tr>
<tr>
<td>37</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>N090E</td>
<td>89.40</td>
</tr>
<tr>
<td>38</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>UP</td>
<td>-51.54</td>
</tr>
<tr>
<td>39</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>N180E</td>
<td>76.50</td>
</tr>
<tr>
<td>40</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>N030E</td>
<td>91.62</td>
</tr>
<tr>
<td>41</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>UP</td>
<td>51.44</td>
</tr>
<tr>
<td>42</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>N120E</td>
<td>75.33</td>
</tr>
<tr>
<td>43</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>N030E</td>
<td>117.77</td>
</tr>
<tr>
<td>44</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>UP</td>
<td>-48.37</td>
</tr>
<tr>
<td>45</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>N120E</td>
<td>-98.30</td>
</tr>
<tr>
<td>46</td>
<td>13AUG1974</td>
<td>03:46</td>
<td>51.490N</td>
<td>178.110W</td>
<td>N068</td>
<td>47.0</td>
<td>114.0</td>
<td>6.1</td>
<td>N090E</td>
<td>29.18</td>
</tr>
<tr>
<td>47</td>
<td>13AUG1974</td>
<td>03:46</td>
<td>51.490N</td>
<td>178.110W</td>
<td>N068</td>
<td>47.0</td>
<td>114.0</td>
<td>6.1</td>
<td>UP</td>
<td>-16.97</td>
</tr>
<tr>
<td>48</td>
<td>13AUG1974</td>
<td>03:46</td>
<td>51.490N</td>
<td>178.110W</td>
<td>N068</td>
<td>47.0</td>
<td>114.0</td>
<td>6.1</td>
<td>N180E</td>
<td>-21.94</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>-----------------</td>
</tr>
<tr>
<td>49</td>
<td>11NOV1974</td>
<td>05:17</td>
<td>51.590N</td>
<td>178.080W</td>
<td>N073</td>
<td>69.0</td>
<td>108.0</td>
<td>6.1</td>
<td>N090E</td>
<td>-45.72</td>
</tr>
<tr>
<td>50</td>
<td>11NOV1974</td>
<td>05:17</td>
<td>51.590N</td>
<td>178.080W</td>
<td>N073</td>
<td>69.0</td>
<td>108.0</td>
<td>6.1</td>
<td>UP</td>
<td>-23.95</td>
</tr>
<tr>
<td>51</td>
<td>11NOV1974</td>
<td>05:17</td>
<td>51.590N</td>
<td>178.080W</td>
<td>N073</td>
<td>69.0</td>
<td>108.0</td>
<td>6.1</td>
<td>N180E</td>
<td>-30.35</td>
</tr>
<tr>
<td>52</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N183</td>
<td>58.0</td>
<td>81.0</td>
<td>6.0</td>
<td>N225E</td>
<td>91.98</td>
</tr>
<tr>
<td>53</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N183</td>
<td>58.0</td>
<td>81.0</td>
<td>6.0</td>
<td>UP</td>
<td>35.76</td>
</tr>
<tr>
<td>54</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>82.0</td>
<td>6.0</td>
<td>N315E</td>
<td>60.58</td>
</tr>
<tr>
<td>55</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>82.0</td>
<td>6.0</td>
<td>UP</td>
<td>-86.98</td>
</tr>
<tr>
<td>56</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>82.0</td>
<td>6.0</td>
<td>N000E</td>
<td>-74.77</td>
</tr>
<tr>
<td>57</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N186</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>N045E</td>
<td>44.91</td>
</tr>
<tr>
<td>58</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N187</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>UP</td>
<td>-19.62</td>
</tr>
<tr>
<td>59</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N187</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>N135E</td>
<td>49.15</td>
</tr>
<tr>
<td>60</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>N075E</td>
<td>74.95</td>
</tr>
<tr>
<td>61</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>UP</td>
<td>-87.69</td>
</tr>
<tr>
<td>62</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>UP</td>
<td>-72.35</td>
</tr>
<tr>
<td>63</td>
<td>25JUL1975</td>
<td>10:40</td>
<td>55.040N</td>
<td>160.410W</td>
<td>N353</td>
<td>38.0</td>
<td>34.0</td>
<td>5.6</td>
<td>N030E</td>
<td>-12.79</td>
</tr>
<tr>
<td>64</td>
<td>25JUL1975</td>
<td>10:40</td>
<td>55.040N</td>
<td>160.410W</td>
<td>N353</td>
<td>38.0</td>
<td>34.0</td>
<td>5.6</td>
<td>UP</td>
<td>11.75</td>
</tr>
<tr>
<td>65</td>
<td>25JUL1975</td>
<td>10:40</td>
<td>55.040N</td>
<td>160.410W</td>
<td>N353</td>
<td>38.0</td>
<td>34.0</td>
<td>5.6</td>
<td>UP</td>
<td>-9.57</td>
</tr>
<tr>
<td>66</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>N090E</td>
<td>65.70</td>
</tr>
<tr>
<td>67</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>UP</td>
<td>-22.95</td>
</tr>
<tr>
<td>68</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>N180E</td>
<td>-27.69</td>
</tr>
<tr>
<td>69</td>
<td>22FEB1976</td>
<td>07:21</td>
<td>51.570N</td>
<td>176.810W</td>
<td>N024</td>
<td>61.0</td>
<td>38.0</td>
<td>4.7</td>
<td>N165E</td>
<td>7.32</td>
</tr>
<tr>
<td>70</td>
<td>5MAY1978</td>
<td>05:33</td>
<td>63.302N</td>
<td>150.971W</td>
<td>N338.7</td>
<td>134.0</td>
<td>120.4</td>
<td>5.1</td>
<td>N075E</td>
<td>11.72</td>
</tr>
<tr>
<td>71</td>
<td>5MAY1978</td>
<td>05:33</td>
<td>63.302N</td>
<td>150.971W</td>
<td>N338.7</td>
<td>134.0</td>
<td>120.4</td>
<td>5.1</td>
<td>UP</td>
<td>10.11</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>73</td>
<td>27JAN1979</td>
<td>18:57</td>
<td>54.790N</td>
<td>160.640W</td>
<td>N009</td>
<td>53.0</td>
<td>62.0</td>
<td>6.2</td>
<td>N197E</td>
<td>7.59</td>
</tr>
<tr>
<td>74</td>
<td>27JAN1979</td>
<td>18:57</td>
<td>54.790N</td>
<td>160.640W</td>
<td>N009</td>
<td>53.0</td>
<td>62.0</td>
<td>6.2</td>
<td>UP</td>
<td>8.01</td>
</tr>
<tr>
<td>75</td>
<td>27JAN1979</td>
<td>18:57</td>
<td>54.790N</td>
<td>160.640W</td>
<td>N009</td>
<td>53.0</td>
<td>62.0</td>
<td>6.2</td>
<td>N107E</td>
<td>9.18</td>
</tr>
<tr>
<td>76</td>
<td>13FEB1979</td>
<td>05:34</td>
<td>55.170N</td>
<td>156.940W</td>
<td>N273</td>
<td>47.0</td>
<td>226.0</td>
<td>6.5</td>
<td>N107E</td>
<td>-41.37</td>
</tr>
<tr>
<td>77</td>
<td>13FEB1979</td>
<td>05:34</td>
<td>55.170N</td>
<td>156.940W</td>
<td>N273</td>
<td>47.0</td>
<td>226.0</td>
<td>6.5</td>
<td>UP</td>
<td>9.80</td>
</tr>
<tr>
<td>78</td>
<td>13FEB1979</td>
<td>05:34</td>
<td>55.170N</td>
<td>156.940W</td>
<td>N273</td>
<td>47.0</td>
<td>226.0</td>
<td>6.5</td>
<td>N197E</td>
<td>22.42</td>
</tr>
<tr>
<td>79</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>UP</td>
<td>-24.36</td>
</tr>
<tr>
<td>80</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>N279E</td>
<td>-60.81</td>
</tr>
<tr>
<td>81</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>N009E</td>
<td>81.33</td>
</tr>
<tr>
<td>82</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>N180E</td>
<td>-171.41</td>
</tr>
<tr>
<td>83</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>N090E</td>
<td>-96.33</td>
</tr>
<tr>
<td>84</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>UP</td>
<td>62.90</td>
</tr>
<tr>
<td>85</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N197</td>
<td>13.0</td>
<td>72.0</td>
<td>7.3</td>
<td>N270E</td>
<td>-40.84</td>
</tr>
<tr>
<td>86</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N197</td>
<td>13.0</td>
<td>72.0</td>
<td>7.3</td>
<td>N000E</td>
<td>62.81</td>
</tr>
<tr>
<td>87</td>
<td>28DEC1981</td>
<td>10:28</td>
<td>54.669N</td>
<td>160.407W</td>
<td>N357</td>
<td>33.0</td>
<td>75.0</td>
<td>3.8</td>
<td>N340E</td>
<td>-24.08</td>
</tr>
<tr>
<td>88</td>
<td>28DEC1981</td>
<td>10:28</td>
<td>54.669N</td>
<td>160.407W</td>
<td>N357</td>
<td>33.0</td>
<td>75.0</td>
<td>3.8</td>
<td>UP</td>
<td>-5.58</td>
</tr>
<tr>
<td>89</td>
<td>28DEC1981</td>
<td>10:28</td>
<td>54.669N</td>
<td>160.407W</td>
<td>N357</td>
<td>33.0</td>
<td>75.0</td>
<td>3.8</td>
<td>N070E</td>
<td>-18.41</td>
</tr>
<tr>
<td>90</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N303</td>
<td>25.0</td>
<td>123.0</td>
<td>6.3</td>
<td>UP</td>
<td>5.22</td>
</tr>
<tr>
<td>91</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N303</td>
<td>25.0</td>
<td>123.0</td>
<td>6.3</td>
<td>N250E</td>
<td>7.55</td>
</tr>
<tr>
<td>92</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N303</td>
<td>25.0</td>
<td>123.0</td>
<td>6.3</td>
<td>N160E</td>
<td>6.72</td>
</tr>
<tr>
<td>93</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>N340E</td>
<td>55.55</td>
</tr>
<tr>
<td>94</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>N070E</td>
<td>29.87</td>
</tr>
<tr>
<td>95</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>UP</td>
<td>-19.97</td>
</tr>
<tr>
<td>96</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>N070E</td>
<td>46.92</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH (km)</td>
<td>DIST (km)</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td>-------</td>
<td>----------------</td>
</tr>
<tr>
<td>97</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>UP</td>
<td>-22.89</td>
</tr>
<tr>
<td>98</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>N340E</td>
<td>40.49</td>
</tr>
<tr>
<td>99</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N311</td>
<td>25.0</td>
<td>83.0</td>
<td>6.3</td>
<td>N072E</td>
<td>11.94</td>
</tr>
<tr>
<td>100</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N311</td>
<td>25.0</td>
<td>83.0</td>
<td>6.3</td>
<td>N342E</td>
<td>-24.46</td>
</tr>
<tr>
<td>101</td>
<td>14FEB1983</td>
<td>03:20</td>
<td>54.736N</td>
<td>158.882W</td>
<td>N311</td>
<td>25.0</td>
<td>83.0</td>
<td>6.3</td>
<td>UP</td>
<td>-5.72</td>
</tr>
<tr>
<td>102</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N297</td>
<td>25.0</td>
<td>118.0</td>
<td>6.0</td>
<td>N160E</td>
<td>-3.93</td>
</tr>
<tr>
<td>103</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N297</td>
<td>25.0</td>
<td>118.0</td>
<td>6.0</td>
<td>N250E</td>
<td>-5.71</td>
</tr>
<tr>
<td>104</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N297</td>
<td>25.0</td>
<td>118.0</td>
<td>6.0</td>
<td>UP</td>
<td>-2.72</td>
</tr>
<tr>
<td>105</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>N070E</td>
<td>-27.88</td>
</tr>
<tr>
<td>106</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>UP</td>
<td>-15.40</td>
</tr>
<tr>
<td>107</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>N340E</td>
<td>40.53</td>
</tr>
<tr>
<td>108</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N265</td>
<td>25.0</td>
<td>48.0</td>
<td>6.0</td>
<td>UP</td>
<td>-16.60</td>
</tr>
<tr>
<td>109</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N265</td>
<td>25.0</td>
<td>48.0</td>
<td>6.0</td>
<td>N340E</td>
<td>20.23</td>
</tr>
<tr>
<td>110</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N265</td>
<td>25.0</td>
<td>48.0</td>
<td>6.0</td>
<td>N070E</td>
<td>16.69</td>
</tr>
<tr>
<td>111</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N303</td>
<td>25.0</td>
<td>77.0</td>
<td>6.0</td>
<td>N342E</td>
<td>-13.64</td>
</tr>
<tr>
<td>112</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N303</td>
<td>25.0</td>
<td>77.0</td>
<td>6.0</td>
<td>N072E</td>
<td>14.78</td>
</tr>
<tr>
<td>113</td>
<td>14FEB1983</td>
<td>08:10</td>
<td>54.854N</td>
<td>158.843W</td>
<td>N303</td>
<td>25.0</td>
<td>77.0</td>
<td>6.0</td>
<td>UP</td>
<td>10.79</td>
</tr>
<tr>
<td>114</td>
<td>5OCT1984</td>
<td>15:46</td>
<td>51.871N</td>
<td>176.016W</td>
<td>N090.5</td>
<td>68.0</td>
<td>43.2</td>
<td>5.2</td>
<td>N287E</td>
<td>32.90</td>
</tr>
<tr>
<td>115</td>
<td>5OCT1984</td>
<td>15:46</td>
<td>51.871N</td>
<td>176.016W</td>
<td>N090.5</td>
<td>68.0</td>
<td>43.2</td>
<td>5.2</td>
<td>N197E</td>
<td>31.79</td>
</tr>
<tr>
<td>116</td>
<td>5OCT1984</td>
<td>15:46</td>
<td>51.871N</td>
<td>176.016W</td>
<td>N090.5</td>
<td>68.0</td>
<td>43.2</td>
<td>5.2</td>
<td>UP</td>
<td>14.02</td>
</tr>
<tr>
<td>117</td>
<td>19NOV1984</td>
<td>12:07</td>
<td>51.777N</td>
<td>175.272W</td>
<td>N096.1</td>
<td>58.0</td>
<td>95.2</td>
<td>5.7</td>
<td>N287E</td>
<td>36.64</td>
</tr>
<tr>
<td>118</td>
<td>19NOV1984</td>
<td>12:07</td>
<td>51.777N</td>
<td>175.272W</td>
<td>N096.1</td>
<td>58.0</td>
<td>95.2</td>
<td>5.7</td>
<td>N197E</td>
<td>-43.02</td>
</tr>
<tr>
<td>119</td>
<td>19NOV1984</td>
<td>12:07</td>
<td>51.777N</td>
<td>175.272W</td>
<td>N096.1</td>
<td>58.0</td>
<td>95.2</td>
<td>5.7</td>
<td>UP</td>
<td>14.19</td>
</tr>
<tr>
<td>120</td>
<td>21MAY1985</td>
<td>01:13</td>
<td>54.978N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>N340E</td>
<td>38.26</td>
</tr>
</tbody>
</table>

34
<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPTH (km)</th>
<th>DIST (km)</th>
<th>MOM MAG</th>
<th>COMP</th>
<th>PKACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>21MAY1985</td>
<td>01:13</td>
<td>54.978N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>UP</td>
<td>20.46</td>
</tr>
<tr>
<td>122</td>
<td>21MAY1985</td>
<td>01:13</td>
<td>54.978N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>N250E</td>
<td>23.39</td>
</tr>
<tr>
<td>123</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N144.7</td>
<td>28.0</td>
<td>85.9</td>
<td>4.4</td>
<td>N070E</td>
<td>-17.69</td>
</tr>
<tr>
<td>124</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N144.7</td>
<td>28.0</td>
<td>85.9</td>
<td>4.4</td>
<td>UP</td>
<td>-12.00</td>
</tr>
<tr>
<td>125</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N144.7</td>
<td>28.0</td>
<td>85.9</td>
<td>4.4</td>
<td>N340E</td>
<td>22.84</td>
</tr>
<tr>
<td>126</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N216.0</td>
<td>28.0</td>
<td>15.3</td>
<td>4.4</td>
<td>N343E</td>
<td>-14.70</td>
</tr>
<tr>
<td>127</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N216.0</td>
<td>28.0</td>
<td>15.3</td>
<td>4.4</td>
<td>UP</td>
<td>6.82</td>
</tr>
<tr>
<td>128</td>
<td>25SEP1985</td>
<td>16:29</td>
<td>54.709N</td>
<td>159.728W</td>
<td>N216.0</td>
<td>28.0</td>
<td>15.3</td>
<td>4.4</td>
<td>N073E</td>
<td>-8.19</td>
</tr>
<tr>
<td>129</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>N065E</td>
<td>-34.39</td>
</tr>
<tr>
<td>130</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>UP</td>
<td>-39.87</td>
</tr>
<tr>
<td>131</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>N345E</td>
<td>49.04</td>
</tr>
<tr>
<td>132</td>
<td>9OCT1985</td>
<td>14:16</td>
<td>54.812N</td>
<td>159.466W</td>
<td>N096.7</td>
<td>20.0</td>
<td>7.9</td>
<td>4.5</td>
<td>N073E</td>
<td>5.07</td>
</tr>
<tr>
<td>133</td>
<td>9OCT1985</td>
<td>14:16</td>
<td>54.812N</td>
<td>159.466W</td>
<td>N096.7</td>
<td>20.0</td>
<td>7.9</td>
<td>4.5</td>
<td>UP</td>
<td>6.50</td>
</tr>
<tr>
<td>134</td>
<td>9OCT1985</td>
<td>14:16</td>
<td>54.812N</td>
<td>159.466W</td>
<td>N096.7</td>
<td>20.0</td>
<td>7.9</td>
<td>4.5</td>
<td>N343E</td>
<td>-8.78</td>
</tr>
<tr>
<td>135</td>
<td>14NOV1985</td>
<td>22:18</td>
<td>54.684N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>N343E</td>
<td>-25.04</td>
</tr>
<tr>
<td>136</td>
<td>14NOV1985</td>
<td>22:18</td>
<td>54.684N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>UP</td>
<td>-16.91</td>
</tr>
<tr>
<td>137</td>
<td>14NOV1985</td>
<td>22:18</td>
<td>54.684N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>N073E</td>
<td>21.59</td>
</tr>
<tr>
<td>138</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.629N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>N287E</td>
<td>40.82</td>
</tr>
<tr>
<td>139</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.629N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>UP</td>
<td>22.74</td>
</tr>
<tr>
<td>140</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.629N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>N197E</td>
<td>-48.85</td>
</tr>
<tr>
<td>141</td>
<td>30DEC1985</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>N270E</td>
<td>77.41</td>
</tr>
<tr>
<td>142</td>
<td>30DEC1985</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>UP</td>
<td>16.73</td>
</tr>
<tr>
<td>143</td>
<td>30DEC1985</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>N360E</td>
<td>71.53</td>
</tr>
<tr>
<td>144</td>
<td>2MAR1986</td>
<td>20:42</td>
<td>51.348N</td>
<td>176.715W</td>
<td>N184.9</td>
<td>33.0</td>
<td>59.0</td>
<td>5</td>
<td>N197E</td>
<td>-25.37</td>
</tr>
<tr>
<td>INDEX</td>
<td>DATE</td>
<td>TIME</td>
<td>EPIC LAT</td>
<td>EPIC LONG</td>
<td>AZM</td>
<td>DEPTH</td>
<td>DIST</td>
<td>MOM MAG</td>
<td>COMP</td>
<td>PKACC (cm/sec²)</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
<td>-----------------</td>
</tr>
<tr>
<td>145</td>
<td>2MAR1986</td>
<td>20:42</td>
<td>51.348N</td>
<td>176.715W</td>
<td>N184.9</td>
<td>33.0</td>
<td>59.0</td>
<td>5</td>
<td>UP</td>
<td>-13.42</td>
</tr>
<tr>
<td>146</td>
<td>2MAR1986</td>
<td>20:42</td>
<td>51.348N</td>
<td>176.715W</td>
<td>N184.9</td>
<td>33.0</td>
<td>59.0</td>
<td>5</td>
<td>N287E</td>
<td>22.75</td>
</tr>
<tr>
<td>147</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>N197E</td>
<td>223.18</td>
</tr>
<tr>
<td>148</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>UP</td>
<td>100.32</td>
</tr>
<tr>
<td>149</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>N287E</td>
<td>-172.74</td>
</tr>
<tr>
<td>150</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>N345E</td>
<td>-25.08</td>
</tr>
<tr>
<td>151</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>UP</td>
<td>15.65</td>
</tr>
<tr>
<td>152</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>N075E</td>
<td>-28.61</td>
</tr>
<tr>
<td>153</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>UP</td>
<td>15.27</td>
</tr>
<tr>
<td>154</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>N267E</td>
<td>-35.11</td>
</tr>
<tr>
<td>155</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>N357E</td>
<td>-21.35</td>
</tr>
<tr>
<td>156</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N263.4</td>
<td>28.0</td>
<td>19.2</td>
<td>5.3</td>
<td>N343E</td>
<td>-26.01</td>
</tr>
<tr>
<td>157</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N263.4</td>
<td>28.0</td>
<td>19.2</td>
<td>5.3</td>
<td>UP</td>
<td>-22.27</td>
</tr>
<tr>
<td>158</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N263.4</td>
<td>28.0</td>
<td>19.2</td>
<td>5.3</td>
<td>N073E</td>
<td>54.30</td>
</tr>
<tr>
<td>159</td>
<td>2JUN1989</td>
<td>15:57</td>
<td>55.145N</td>
<td>160.592W</td>
<td>N195.6</td>
<td>58.0</td>
<td>22.6</td>
<td>--</td>
<td>N000E</td>
<td>--</td>
</tr>
<tr>
<td>160</td>
<td>2JUN1989</td>
<td>15:57</td>
<td>55.145N</td>
<td>160.592W</td>
<td>N195.6</td>
<td>58.0</td>
<td>22.6</td>
<td>--</td>
<td>UP</td>
<td>--</td>
</tr>
<tr>
<td>161</td>
<td>2JUN1989</td>
<td>15:57</td>
<td>55.145N</td>
<td>160.592W</td>
<td>N195.6</td>
<td>58.0</td>
<td>22.6</td>
<td>--</td>
<td>N090E</td>
<td>--</td>
</tr>
<tr>
<td>162</td>
<td>4SEP1989</td>
<td>13:14</td>
<td>55.543N</td>
<td>156.835W</td>
<td>N082.9</td>
<td>11.0</td>
<td>233.1</td>
<td>--</td>
<td>N000E</td>
<td>--</td>
</tr>
<tr>
<td>163</td>
<td>4SEP1989</td>
<td>13:14</td>
<td>55.543N</td>
<td>156.835W</td>
<td>N082.9</td>
<td>11.0</td>
<td>233.1</td>
<td>--</td>
<td>UP</td>
<td>--</td>
</tr>
<tr>
<td>164</td>
<td>4SEP1989</td>
<td>13:14</td>
<td>55.543N</td>
<td>156.835W</td>
<td>N082.9</td>
<td>11.0</td>
<td>233.1</td>
<td>--</td>
<td>N090E</td>
<td>--</td>
</tr>
<tr>
<td>165</td>
<td>21OCT1989</td>
<td>19:24</td>
<td>55.107N</td>
<td>160.107W</td>
<td>N136.1</td>
<td>10.4</td>
<td>35.9</td>
<td>--</td>
<td>N000E</td>
<td>--</td>
</tr>
<tr>
<td>166</td>
<td>21OCT1989</td>
<td>19:24</td>
<td>55.107N</td>
<td>160.107W</td>
<td>N136.1</td>
<td>10.4</td>
<td>35.9</td>
<td>--</td>
<td>UP</td>
<td>--</td>
</tr>
<tr>
<td>167</td>
<td>21OCT1989</td>
<td>19:24</td>
<td>55.107N</td>
<td>160.107W</td>
<td>N136.1</td>
<td>10.4</td>
<td>35.9</td>
<td>--</td>
<td>N090E</td>
<td>--</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0790</td>
<td>0.5920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0770</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2170</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5280</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2170</td>
<td>SFSS</td>
<td>0.0820</td>
<td>0.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2170</td>
<td>SFSS</td>
<td>0.0810</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.6100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.6100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.6100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5740</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0800</td>
<td>0.5920</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>2101</td>
<td>SFSS</td>
<td>0.0810</td>
<td>0.5520</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0512</td>
<td>0.4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0495</td>
<td>0.5700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0505</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0517</td>
<td>0.4300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0516</td>
<td>0.6300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0512</td>
<td>0.6400</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>2713</td>
<td>AR-240</td>
<td>0.0585</td>
<td>0.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>2713</td>
<td>AR-240</td>
<td>0.0585</td>
<td>0.5900</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>2713</td>
<td>AR-240</td>
<td>0.0565</td>
<td>0.5600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0626</td>
<td>0.5700</td>
</tr>
<tr>
<td>26</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0631</td>
<td>0.5500</td>
</tr>
<tr>
<td>27</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0523</td>
<td>0.5800</td>
</tr>
<tr>
<td>28</td>
<td>2739</td>
<td>AR-240</td>
<td>0.0525</td>
<td>0.5800</td>
</tr>
<tr>
<td>29</td>
<td>2739</td>
<td>AR-240</td>
<td>0.0542</td>
<td>0.5900</td>
</tr>
<tr>
<td>30</td>
<td>2739</td>
<td>AR-240</td>
<td>0.0519</td>
<td>0.5800</td>
</tr>
<tr>
<td>31</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>32</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>33</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>34</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>35</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>36</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>37</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0490</td>
<td>0.5700</td>
</tr>
<tr>
<td>38</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0570</td>
<td>0.6100</td>
</tr>
<tr>
<td>39</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
</tr>
<tr>
<td>40</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>41</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>42</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>43</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>44</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>45</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>46</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>47</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>48</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>49</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>50</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>51</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>52</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0530</td>
<td>0.5900</td>
</tr>
<tr>
<td>53</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0560</td>
<td>0.5900</td>
</tr>
<tr>
<td>54</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
</tr>
<tr>
<td>55</td>
<td>2703</td>
<td>AR-240</td>
<td>0.0590</td>
<td>0.6200</td>
</tr>
<tr>
<td>56</td>
<td>2703</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>57</td>
<td>2703</td>
<td>AR-240</td>
<td>0.0580</td>
<td>0.6200</td>
</tr>
<tr>
<td>58</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5700</td>
</tr>
<tr>
<td>59</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5300</td>
</tr>
<tr>
<td>60</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5500</td>
</tr>
<tr>
<td>61</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>62</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>63</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>64</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>65</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>66</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>67</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>68</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>69</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>70</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>71</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>72</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>73</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>74</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>75</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>76</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>77</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>78</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>79</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>80</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5900</td>
</tr>
<tr>
<td>81</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5900</td>
</tr>
<tr>
<td>82</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.6100</td>
</tr>
<tr>
<td>83</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6100</td>
</tr>
<tr>
<td>84</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5700</td>
</tr>
<tr>
<td>85</td>
<td>2765</td>
<td>SMA-1</td>
<td>0.0769</td>
<td>0.6000</td>
</tr>
<tr>
<td>86</td>
<td>2765</td>
<td>SMA-1</td>
<td>0.0781</td>
<td>0.6000</td>
</tr>
<tr>
<td>87</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0578</td>
<td>0.6000</td>
</tr>
<tr>
<td>88</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0562</td>
<td>0.6000</td>
</tr>
<tr>
<td>89</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0581</td>
<td>0.6000</td>
</tr>
<tr>
<td>90</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6600</td>
</tr>
<tr>
<td>91</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6500</td>
</tr>
<tr>
<td>92</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0193</td>
<td>0.6300</td>
</tr>
<tr>
<td>93</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>94</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>95</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>96</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
</tbody>
</table>
Table 3-3 (continued)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>97</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>98</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0360</td>
<td>0.6000</td>
</tr>
<tr>
<td>99</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0540</td>
<td>0.6000</td>
</tr>
<tr>
<td>100</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0560</td>
<td>0.6000</td>
</tr>
<tr>
<td>101</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0510</td>
<td>0.6000</td>
</tr>
<tr>
<td>102</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0193</td>
<td>0.6300</td>
</tr>
<tr>
<td>103</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6500</td>
</tr>
<tr>
<td>104</td>
<td>2744</td>
<td>FBA-3</td>
<td>0.0199</td>
<td>0.6600</td>
</tr>
<tr>
<td>105</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>106</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>107</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>108</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>109</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0360</td>
<td>0.6000</td>
</tr>
<tr>
<td>110</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>111</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0560</td>
<td>0.6000</td>
</tr>
<tr>
<td>112</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0540</td>
<td>0.6000</td>
</tr>
<tr>
<td>113</td>
<td>2789</td>
<td>SMA-1</td>
<td>0.0510</td>
<td>0.6000</td>
</tr>
<tr>
<td>114</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>115</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>116</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>117</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>118</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>119</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>120</td>
<td>2774</td>
<td>--</td>
<td>0.0396</td>
<td>0.6100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>2774</td>
<td>--</td>
<td>0.0383</td>
<td>0.6000</td>
</tr>
<tr>
<td>122</td>
<td>2774</td>
<td>--</td>
<td>0.0388</td>
<td>0.6200</td>
</tr>
<tr>
<td>123</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5500</td>
</tr>
<tr>
<td>124</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0357</td>
<td>0.5300</td>
</tr>
<tr>
<td>125</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0397</td>
<td>0.5700</td>
</tr>
<tr>
<td>126</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0529</td>
<td>0.5900</td>
</tr>
<tr>
<td>127</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0514</td>
<td>0.5700</td>
</tr>
<tr>
<td>128</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0543</td>
<td>0.6100</td>
</tr>
<tr>
<td>129</td>
<td>2773</td>
<td>--</td>
<td>0.0401</td>
<td>0.6150</td>
</tr>
<tr>
<td>130</td>
<td>2773</td>
<td>--</td>
<td>0.0373</td>
<td>0.6150</td>
</tr>
<tr>
<td>131</td>
<td>2773</td>
<td>--</td>
<td>0.0386</td>
<td>0.6500</td>
</tr>
<tr>
<td>132</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0543</td>
<td>0.6100</td>
</tr>
<tr>
<td>133</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0514</td>
<td>0.5700</td>
</tr>
<tr>
<td>134</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0529</td>
<td>0.5900</td>
</tr>
<tr>
<td>135</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0524</td>
<td>0.5800</td>
</tr>
<tr>
<td>136</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0513</td>
<td>0.5600</td>
</tr>
<tr>
<td>137</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0541</td>
<td>0.5900</td>
</tr>
<tr>
<td>138</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>139</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>140</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>141</td>
<td>2702</td>
<td>--</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>142</td>
<td>2702</td>
<td>--</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>143</td>
<td>2702</td>
<td>--</td>
<td>0.0370</td>
<td>0.5800</td>
</tr>
<tr>
<td>144</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>145</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>146</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>147</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>148</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>149</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>150</td>
<td>2773</td>
<td>--</td>
<td>0.0398</td>
<td>0.6350</td>
</tr>
<tr>
<td>151</td>
<td>2773</td>
<td>--</td>
<td>0.0357</td>
<td>0.5800</td>
</tr>
<tr>
<td>152</td>
<td>2773</td>
<td>--</td>
<td>0.0369</td>
<td>0.6200</td>
</tr>
<tr>
<td>153</td>
<td>2774</td>
<td>--</td>
<td>0.0391</td>
<td>0.5600</td>
</tr>
<tr>
<td>154</td>
<td>2774</td>
<td>--</td>
<td>0.0405</td>
<td>0.5850</td>
</tr>
<tr>
<td>155</td>
<td>2774</td>
<td>--</td>
<td>0.0389</td>
<td>0.5600</td>
</tr>
<tr>
<td>156</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0515</td>
<td>0.5400</td>
</tr>
<tr>
<td>157</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0552</td>
<td>0.5450</td>
</tr>
<tr>
<td>158</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0600</td>
<td>0.2400</td>
</tr>
<tr>
<td>159</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>160</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>161</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>162</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>163</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>164</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>165</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>166</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>167</td>
<td>2744</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
CHAPTER 4
RESPONSE SPECTRA

Stress waves generated by earthquakes impose loading on man-made structures located in their propagation path. Structural vibration associated with this loading generate seismic forces in structural members that have to be safely resisted. The severity of these structural vibrations (structure response) depends to a large extent on the characteristics of associated earthquake motions and the dynamic characteristics of the corresponding structure. Some of the important characteristics of earthquake motion include its peak values (such as peak acceleration, peak velocity, and peak displacement) and its frequency content. One of the measures of earthquake motion frequency content are spectrum shapes [Blume, Sharp, and Dalal, 1973]. One of the objectives of this study is the development of response spectra from Alaska earthquakes and the determination of "Standardized" Response Spectra. The developed response spectra from both the horizontal and vertical acceleration records are presented in this chapter. Standardized spectra are presented in the following chapter. A brief discussion of the procedure followed in computing a response spectrum from a given earthquake input motion is given below.

I—COMPUTATION OF RESPONSE SPECTRA [Blume, Sharp, and Dalal, 1973]

A response spectrum is a graphical relationship involving the maximum response of an elastic single degree of freedom system with varying stiffness and damping characteristics to a given input excitation. The graphical relationship is
represented by a plot of maximum response versus frequency or period.

A single degree of freedom system is a system involving a mass, a dashpot, and a stiffness. The spring is linearly—elastic with stiffness \(k \) and the dashpot has a damping coefficient \(c \). The equation of motion of this system is:

\[
mx + cx + kx = -mx_g(t) \tag{1}
\]

where: \(m \) is the mass, \(x \) is the displacement relative to ground, \(x_g(t) \) is the ground motion acceleration, \(c \) is the damping constant, \(k \) is the spring constant and a superposed dot indicates differentiation with respect to time. Equation 1 could be rewritten as:

\[
\ddot{x} + 2\xi\omega\dot{x} + \omega^2x = -x_g(t) \tag{2}
\]

in which \(\omega=\sqrt{(k/m)} \) is the circular natural frequency in radians per second and \(\xi = (c/2m\omega) \) is the damping ratio. The solution of Equation 2 is given by:

\[
x(t) = -\int_0^t h(t-\tau)x_g(\tau)d\tau \tag{3}
\]

in which:

\[
h(t-\tau) = \text{impulse response function} = \exp[-\xi\omega(t-\tau)]\sin[\bar{\omega}(t-\tau)]/\bar{\omega}
\]

\[
\bar{\omega} = \text{damped circular frequency} = \omega(\sqrt{1-\xi^2}); \text{ For small values of damping } \bar{\omega} = \omega.
\]
The force in the spring at any instant of time \(t \) is given by:

\[
F(t) = kx(t) = m\omega^2 x(t)
\] \(\text{(4)} \)

in which the term \(\ddot{z}_p = \omega^2 x(t) \) has the units of acceleration and is termed pseudo–absolute acceleration. Note that from Equation 2, \(\ddot{x} + \ddot{x}_g(t) = \text{absolute acceleration} = -(\omega^2 x + 2\xi \omega \dot{x}) \), hence the term pseudo absolute acceleration (the magnitude of \(\ddot{z}_p \) differs from that of the real absolute acceleration by the quantity, \(2\xi \omega \dot{x} \)). Similarly, pseudo relative velocity is defined by \(\dot{z}_p = \ddot{z}_p / \omega \). Therefore, for the case where damping is small \((\bar{\omega} = \omega) \), \(\ddot{z}_p(t) = \omega^2 x_p(t) = \omega^2 x(t) \).

By using the definition of a response spectra, the pseudo absolute acceleration response spectrum, \(S_a \), is given by:

\[
S_a(T_n, \xi, \ddot{x}_g(t)) = \max ||\ddot{z}_p(T_n, \xi, \ddot{x}_g(t))||
\]

in which \(T_n = \text{natural period} = 2\pi / \omega \), and || represents absolute value.

For a rigid system in which \(T_n = 0 \), \(S_a(0, \xi, \ddot{x}_g(t)) = \max ||\ddot{x}_g(t)|| = a_{\text{peak}} \), where \(a_{\text{peak}} \) is peak ground acceleration. This makes it convenient to normalize the ground motion, \(\ddot{x}_g(t) \), by \(a_{\text{peak}} \) and use the normalized motion to calculate a normalized response spectra. Ordinates of this normalized spectrum will therefore be a dimensionless ratio of the pseudo absolute acceleration spectrum value to
\(a_{\text{peak}} \) and is termed dynamic amplification factor for pseudo absolute acceleration. The value of this dynamic amplification factor at \(T_n = 0 \) is \(S_a(0, \xi, x_g(t))/a_{\text{peak}} = 1 \).

II– RESPONSE SPECTRA FROM ALASKA EARTHQUAKES

For the purposes of this study, response spectra associated with Alaska earthquakes (acceleration time histories of Appendix A) were developed for damping ratios of 0.0, 0.02, 0.05, 0.1, 0.2 using BAP. Plots of these spectra are shown in Appendix B.
CHAPTER 5

STATISTICAL ANALYSIS OF ALASKA RESPONSE SPECTRA AND
COMPARISON TO SPECTRA FROM OTHER EARTHQUAKES

Recent evidence indicates that characteristics of response spectra derived
from earthquake ground shaking at a given site depend on the characteristics of soil
deposits underlying this site, earthquake source mechanism, earthquake magnitude,
distance between earthquake source and site, and characteristics of travel path
between source and site. Ideally, earthquake records should be grouped such that
one of these parameters is varied while holding all other parameters constant so as
to study the influence of this parameter on response spectra independently.
However, lack of availability of enough earthquake records would prohibit such
analysis.

In this study, records of Alaska earthquakes that triggered before the arrival
of S-waves were identified. These records were grouped into four groups; a
statistical analysis was conducted on each of these groups; and results of these
analyses are compared to those from similar analyses based on Japan and California
earthquakes. All records of horizontal acceleration were included in the first group
while the second group included all records of vertical accelerations. The third
group included all records of horizontal accelerations with peak accelerations larger
than 0.1g, and the fourth group included all records of vertical accelerations with
peak accelerations larger than 0.05g. A list of records included in each of the
different groups is given in Tables 5-1 through 5-4. It is noted that due to the lack
of availability of enough records, it was deemed impractical to group records
according to characteristics of recording sites.

I-- STATISTICAL ANALYSES

The performed statistical analyses involved computation of statistics such as mean, standard deviation, and 85th percentile. The procedure followed in each of these analyses include the following steps:

1— Ground acceleration records are normalized with respect to their respective peak accelerations.

2— Normalized response spectra associated with each of these normalized acceleration records are computed.

3— Mean, standard deviation, and 85th percentile response spectra associated with each of the four groups are computed. Procedure used in the computation of these spectra is as follows [Blume et al., 1973]:

Let $S_i(T_j, \xi)$ be the spectral ordinate associated with the ith normalized spectra for the period T_j and damping ξ. Let $SM(T_j, \xi)$ be the mean, $SD(T_j, \xi)$ be the standard deviation, and $S85(T_j, \xi)$ be the 85th percentile for the period T_j and damping ratio ξ. For a number of records, n, involved in an analysis:

$$SM(T_j, \xi) = \left(\frac{\sum_{i=1}^{n} S_i(T_j, \xi)}{n} \right)$$

$$SD(T_j, \xi) = \left\{ \frac{\sum_{i=1}^{n} [S_i(T_j, \xi) - SM(T_j, \xi)]^2}{(n-1)} \right\}^{0.5}$$

$$S85(T_j, \xi) = SM(T_j, \xi) + C*SD(T_j, \xi)$$
in which the values of C are given in Table 5–5 (normal distribution).

Note that the mean indicates the central tendency of the sample, the standard deviation measures uncertainty associated with the sample, and the 85th percentile value means that 85% of the numbers in the sample fall at or below that value.

The mean, standard deviation, and 85th percentile normalized response spectra (pseudo acceleration and pseudo velocity) for the four groups are shown in Figures 5–1 through 5–24. These plots are given in terms of normalized pseudo velocity vs period as well as in terms of normalized pseudo acceleration (dynamic amplification factor: spectral acceleration divided by peak ground acceleration) vs period.

Figure 5–1 shows a plot of the average response spectrum for the analysis involving all horizontal component records (group 1), while Figure 5–7 shows the corresponding plot for the analysis involving all horizontal records with peak ground accelerations larger than 0.1g (group 3). Standard deviations associated with these analyses are shown in Figures 5–2 and 5–8 and the corresponding 85% acceleration response spectra are shown in Figures 5–3 and 5–9.

Figure 5–4 shows a plot of the average response spectrum for the analysis involving all vertical component records (group 2), while Figure 5–10 shows the corresponding plot for the analysis involving all vertical records with peak ground accelerations larger than 0.05g (group 4). Standard deviations associated with these analyses are shown in Figures 5–5 and 5–11 and the corresponding 85% acceleration response spectra are shown in Figures 5–6 and 5–12.

Figures 13 through 24 are plots of velocity response spectra corresponding to
Figures 1 through 12.

Response spectra associated with groups 1 and 2 (Figures 1 through 6 and 13 through 18) are smoother than those associated with groups 3 and 4 (Figure 5–7 through 5–12 and Figures 5–19 through 5–24). Also, the values of standard deviations (in regions of high amplification) associated with groups 3 and 4 are larger than those associated with groups 1 and 2. This is partly attributed to the small number of available records associated with groups 3 and 4. The usefulness of the normalized spectra associated with groups 3 and 4 is therefore limited.

The values of standard deviations associated with groups 1 and 2 (in regions of high amplification) are large (see Figures 2 and 8). This could be partially attributed to using earthquake records generated by earthquakes of different magnitudes and measured at various distances from the source using instruments located on different types of soil deposits (all of these parameters have an influence on response spectra as indicated earlier). Also, the majority of the acceleration records used in computing the standardized response spectra associated with these groups (Figures 1, 3, 7, and 9) have small amplitudes, and therefore these spectra should be considered preliminary.

II—COMPARISON TO SPECTRA FROM OTHER EARTHQUAKES

In the following, the standard response spectra associated with group 1 (all horizontal records) are compared to those obtained from Japan and California earthquakes. The average normalized spectra that are based on Japan and California earthquakes (Figure 25) were obtained from a study done by Seed et. al.
that appeared in the Bulletin of the Seismological Society of America [Seed et al., 1976]. These Spectra were derived for different site conditions that varied from rock to soft clays and loose sands. It is to be noted that that the average standardized response spectra derive from Alaska earthquakes did not include such consideration of site conditions due to the lack of availability of enough records as indicated earlier and therefore this comparison is only subjective in nature. The average spectra from Japan and California earthquakes were derived using 5 % damping and therefore they will be compared to the 5 % damping spectrum of Figure 5–1.

The maximum mean amplification associated with Alaska earthquakes as observed in Figure 5–1 (about 2.2) is smaller than the maximum mean amplification associated with Japan earthquakes as seen in Figure 5–25a (varies between 3.3 for very dense and stiff soils and 2.6 for very loose soils). The period range over which amplifications larger than 1 are observed in Figure 5–1 is larger than the corresponding range for group A (very dense and stiff soils) sites of Figure 5–25a but smaller than that for groups B (intermediate group) and C (very loose soil) sites. Similarly, the maximum mean amplification associated with spectra from Alaska earthquakes (Figure 5–1) is less than or equal (varies between 2.2 for soft clay to 2.9 for stiff soil) to that associated with California earthquakes (Figure 5–35b). The range over which amplifications larger than 1 for the Alaska mean spectra of Figure 5–1 is larger than that associated with California rock sites of Figure 5–25b but smaller than that associate with other sites.

It is therefore concluded that as far as amplification is concerned, spectra based on Japanese and California earthquakes are more conservative than those associated with Alaska earthquakes. However, this conclusion should be considered
preliminary because of the limited number of records used in the analyses conducted as part of this study, the large proportion of small amplitude acceleration records among the used ones, and the inability to account for site effects on response spectra. It is therefore important to redo the analysis presented in this report in the future as more significant records of Alaska earthquakes recorded on different site conditions become available.

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>2</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.3900</td>
</tr>
<tr>
<td>3</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>4</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>5</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>6</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>7</td>
<td>2702</td>
<td>--</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>8</td>
<td>2702</td>
<td>--</td>
<td>0.0370</td>
<td>0.5800</td>
</tr>
<tr>
<td>9</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>10</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>11</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.6100</td>
</tr>
<tr>
<td>12</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.6100</td>
</tr>
<tr>
<td>13</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0490</td>
<td>0.5700</td>
</tr>
<tr>
<td>14</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
</tr>
<tr>
<td>15</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5700</td>
</tr>
<tr>
<td>16</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5500</td>
</tr>
<tr>
<td>17</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0526</td>
<td>0.5700</td>
</tr>
<tr>
<td>18</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0523</td>
<td>0.5800</td>
</tr>
<tr>
<td>19</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>20</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.5900</td>
</tr>
<tr>
<td>21</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5900</td>
</tr>
<tr>
<td>22</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.5900</td>
</tr>
<tr>
<td>23</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.6100</td>
</tr>
<tr>
<td>24</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.6100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>26</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>27</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0377</td>
<td>0.6000</td>
</tr>
<tr>
<td>28</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
<tr>
<td>29</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>30</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>31</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>32</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0400</td>
<td>0.6000</td>
</tr>
<tr>
<td>33</td>
<td>2765</td>
<td>SMA-1</td>
<td>0.0781</td>
<td>0.6000</td>
</tr>
<tr>
<td>34</td>
<td>2765</td>
<td>SMA-1</td>
<td>0.0769</td>
<td>0.6000</td>
</tr>
<tr>
<td>35</td>
<td>2773</td>
<td>--</td>
<td>0.0401</td>
<td>0.6150</td>
</tr>
<tr>
<td>36</td>
<td>2773</td>
<td>--</td>
<td>0.0386</td>
<td>0.6500</td>
</tr>
<tr>
<td>37</td>
<td>2773</td>
<td>--</td>
<td>0.0369</td>
<td>0.6200</td>
</tr>
<tr>
<td>38</td>
<td>2773</td>
<td>--</td>
<td>0.0398</td>
<td>0.6350</td>
</tr>
<tr>
<td>39</td>
<td>2774</td>
<td>--</td>
<td>0.0388</td>
<td>0.6200</td>
</tr>
<tr>
<td>40</td>
<td>2774</td>
<td>--</td>
<td>0.0396</td>
<td>0.6100</td>
</tr>
<tr>
<td>41</td>
<td>2774</td>
<td>--</td>
<td>0.0405</td>
<td>0.5850</td>
</tr>
<tr>
<td>42</td>
<td>2774</td>
<td>--</td>
<td>0.0399</td>
<td>0.5600</td>
</tr>
<tr>
<td>43</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>44</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0360</td>
<td>0.6000</td>
</tr>
<tr>
<td>45</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0541</td>
<td>0.5900</td>
</tr>
<tr>
<td>46</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0524</td>
<td>0.5800</td>
</tr>
</tbody>
</table>
Table 5-2 Earthquake Information and Recording Station Information (Vertical Acceleration used in Statistical Analysis)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPTH (km)</th>
<th>DIST (km)</th>
<th>MAG</th>
<th>COMP</th>
<th>PK-ACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.430N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>UP</td>
<td>1.066</td>
</tr>
<tr>
<td>2</td>
<td>28DEC1985</td>
<td>04:39</td>
<td>51.620N</td>
<td>177.166W</td>
<td>N233.0</td>
<td>52.0</td>
<td>45.5</td>
<td>5.2</td>
<td>UP</td>
<td>2.274</td>
</tr>
<tr>
<td>3</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>23.0</td>
<td>135.1</td>
<td>7.9</td>
<td>UP</td>
<td>10.32</td>
</tr>
<tr>
<td>4</td>
<td>30DEC1986</td>
<td>12:41</td>
<td>61.541N</td>
<td>150.340W</td>
<td>N323.9</td>
<td>62.0</td>
<td>48.8</td>
<td>5.6</td>
<td>UP</td>
<td>16.73</td>
</tr>
<tr>
<td>5</td>
<td>2JUN1964</td>
<td>09:50</td>
<td>60.350N</td>
<td>145.870W</td>
<td>N017</td>
<td>16.0</td>
<td>22.0</td>
<td>5.2</td>
<td>UP</td>
<td>11.55</td>
</tr>
<tr>
<td>6</td>
<td>2JUN1964</td>
<td>22:06</td>
<td>58.140N</td>
<td>152.180W</td>
<td>N203</td>
<td>13.0</td>
<td>47.0</td>
<td>5.0</td>
<td>UP</td>
<td>13.84</td>
</tr>
<tr>
<td>7</td>
<td>30JUL1972</td>
<td>21:43</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>UP</td>
<td>51.34</td>
</tr>
<tr>
<td>8</td>
<td>1JAN1975</td>
<td>03:35</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N137</td>
<td>58.0</td>
<td>79.0</td>
<td>6.0</td>
<td>UP</td>
<td>19.62</td>
</tr>
<tr>
<td>9</td>
<td>1DEC1986</td>
<td>12:02</td>
<td>60.150N</td>
<td>152.820W</td>
<td>N142</td>
<td>82.0</td>
<td>101.0</td>
<td>6.3</td>
<td>UP</td>
<td>17.19</td>
</tr>
<tr>
<td>10</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>UP</td>
<td>87.69</td>
</tr>
<tr>
<td>11</td>
<td>2FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N140</td>
<td>13.0</td>
<td>166.0</td>
<td>7.3</td>
<td>UP</td>
<td>24.36</td>
</tr>
<tr>
<td>12</td>
<td>2FEB1979</td>
<td>21:37</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>UP</td>
<td>62.90</td>
</tr>
<tr>
<td>13</td>
<td>6APR1974</td>
<td>01:33</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>UP</td>
<td>51.44</td>
</tr>
<tr>
<td>14</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>UP</td>
<td>48.37</td>
</tr>
<tr>
<td>15</td>
<td>1FEB1983</td>
<td>03:20</td>
<td>54.730N</td>
<td>158.882W</td>
<td>N310</td>
<td>25.0</td>
<td>32.0</td>
<td>6.3</td>
<td>UP</td>
<td>19.97</td>
</tr>
<tr>
<td>16</td>
<td>1FEB1983</td>
<td>03:10</td>
<td>54.834N</td>
<td>158.843W</td>
<td>N285</td>
<td>25.0</td>
<td>28.0</td>
<td>6.0</td>
<td>UP</td>
<td>15.40</td>
</tr>
<tr>
<td>17</td>
<td>9OCT1985</td>
<td>09:34</td>
<td>54.736N</td>
<td>159.469W</td>
<td>N172.5</td>
<td>15.0</td>
<td>47.7</td>
<td>6.5</td>
<td>UP</td>
<td>39.87</td>
</tr>
<tr>
<td>18</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N207.1</td>
<td>28.0</td>
<td>45.1</td>
<td>5.3</td>
<td>UP</td>
<td>13.65</td>
</tr>
<tr>
<td>19</td>
<td>2MAY1987</td>
<td>03:12</td>
<td>54.970N</td>
<td>160.360W</td>
<td>N250.0</td>
<td>47.0</td>
<td>19.8</td>
<td>4.3</td>
<td>UP</td>
<td>20.46</td>
</tr>
<tr>
<td>20</td>
<td>2MAY1987</td>
<td>19:22</td>
<td>54.800N</td>
<td>159.885W</td>
<td>N156.0</td>
<td>28.0</td>
<td>29.2</td>
<td>5.3</td>
<td>UP</td>
<td>15.27</td>
</tr>
<tr>
<td>21</td>
<td>1FEB1983</td>
<td>03:20</td>
<td>54.730N</td>
<td>158.882W</td>
<td>N281</td>
<td>25.0</td>
<td>46.0</td>
<td>6.3</td>
<td>UP</td>
<td>22.89</td>
</tr>
<tr>
<td>22</td>
<td>1NOV1988</td>
<td>22:18</td>
<td>54.694N</td>
<td>159.549W</td>
<td>N170.5</td>
<td>19.0</td>
<td>15.4</td>
<td>5.8</td>
<td>UP</td>
<td>16.91</td>
</tr>
</tbody>
</table>

Table 5-2 (continued)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>2</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>3</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.8400</td>
</tr>
<tr>
<td>4</td>
<td>2702</td>
<td>AR-240</td>
<td>0.0570</td>
<td>0.6000</td>
</tr>
<tr>
<td>5</td>
<td>2706</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.6100</td>
</tr>
<tr>
<td>6</td>
<td>2710</td>
<td>AR-240</td>
<td>0.0520</td>
<td>0.5900</td>
</tr>
<tr>
<td>7</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0570</td>
<td>0.6100</td>
</tr>
<tr>
<td>8</td>
<td>2716</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5300</td>
</tr>
<tr>
<td>9</td>
<td>2719</td>
<td>AR-240</td>
<td>0.0631</td>
<td>0.6500</td>
</tr>
<tr>
<td>10</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>11</td>
<td>2728</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>12</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5700</td>
</tr>
<tr>
<td>13</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>14</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>15</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>16</td>
<td>2764</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
<tr>
<td>17</td>
<td>2773</td>
<td>--</td>
<td>0.0573</td>
<td>0.6150</td>
</tr>
<tr>
<td>18</td>
<td>2773</td>
<td>--</td>
<td>0.0573</td>
<td>0.5860</td>
</tr>
<tr>
<td>19</td>
<td>2774</td>
<td>--</td>
<td>0.0583</td>
<td>0.6000</td>
</tr>
<tr>
<td>20</td>
<td>2774</td>
<td>--</td>
<td>0.0391</td>
<td>0.6500</td>
</tr>
<tr>
<td>21</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.6000</td>
</tr>
<tr>
<td>22</td>
<td>2776</td>
<td>SMA-1</td>
<td>0.0513</td>
<td>0.5600</td>
</tr>
<tr>
<td>INDEX</td>
<td>SITE #</td>
<td>INSTR TYPE</td>
<td>INSTR PERIOD</td>
<td>INSTR DAMP</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>2</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0550</td>
<td>0.5900</td>
</tr>
<tr>
<td>3</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6750</td>
</tr>
<tr>
<td>4</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0196</td>
<td>0.6200</td>
</tr>
<tr>
<td>5</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.6100</td>
</tr>
<tr>
<td>6</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.6000</td>
</tr>
<tr>
<td>7</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0379</td>
<td>0.6000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPT (km)</th>
<th>DIST (km)</th>
<th>MAG</th>
<th>COMP</th>
<th>PKACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N090E</td>
<td>203.67</td>
</tr>
<tr>
<td>2</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>N180E</td>
<td>-114.65</td>
</tr>
<tr>
<td>3</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>N197E</td>
<td>223.18</td>
</tr>
<tr>
<td>4</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>N287E</td>
<td>-172.74</td>
</tr>
<tr>
<td>5</td>
<td>28FEB1979</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.3</td>
<td>N180E</td>
<td>-171.41</td>
</tr>
<tr>
<td>6</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>N030E</td>
<td>117.77</td>
</tr>
<tr>
<td>7</td>
<td>6APR1974</td>
<td>03:55</td>
<td>54.900N</td>
<td>160.290W</td>
<td>N346</td>
<td>40.0</td>
<td>50.0</td>
<td>5.8</td>
<td>N120E</td>
<td>-98.30</td>
</tr>
</tbody>
</table>
Table 5-4 Earthquake Information and Recording Station Information (Vertical Acceleration with pkacc > 0.05g used in Statistical Analysis)

<table>
<thead>
<tr>
<th>INDEX</th>
<th>SITE #</th>
<th>INSTR TYPE</th>
<th>INSTR PERIOD</th>
<th>INSTR DAMP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0194</td>
<td>0.6400</td>
</tr>
<tr>
<td>2</td>
<td>2701</td>
<td>AR-240</td>
<td>0.0510</td>
<td>0.5900</td>
</tr>
<tr>
<td>3</td>
<td>2714</td>
<td>AR-240</td>
<td>0.0570</td>
<td>0.6100</td>
</tr>
<tr>
<td>4</td>
<td>2727</td>
<td>SMA-1</td>
<td>0.0390</td>
<td>0.5900</td>
</tr>
<tr>
<td>5</td>
<td>2734</td>
<td>SMA-1</td>
<td>0.0370</td>
<td>0.5700</td>
</tr>
<tr>
<td>6</td>
<td>2744</td>
<td>SMA-1</td>
<td>0.0380</td>
<td>0.6000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INDEX</th>
<th>DATE</th>
<th>TIME</th>
<th>EPIC LAT</th>
<th>EPIC LONG</th>
<th>AZM</th>
<th>DEPTH (km)</th>
<th>DIST (km)</th>
<th>MAG</th>
<th>COMP</th>
<th>PKACC (cm/sec²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7MAY1986</td>
<td>22:47</td>
<td>51.520N</td>
<td>174.776W</td>
<td>N106.3</td>
<td>33.0</td>
<td>135.1</td>
<td>7.9</td>
<td>UP</td>
<td>100.32</td>
</tr>
<tr>
<td>2</td>
<td>2MAY1971</td>
<td>06:08</td>
<td>51.420N</td>
<td>177.210W</td>
<td>N041</td>
<td>38.0</td>
<td>67.0</td>
<td>6.8</td>
<td>UP</td>
<td>63.66</td>
</tr>
<tr>
<td>3</td>
<td>30JUL1972</td>
<td>21:45</td>
<td>56.770N</td>
<td>135.910W</td>
<td>N048</td>
<td>29.0</td>
<td>48.0</td>
<td>7.5</td>
<td>UP</td>
<td>-51.54</td>
</tr>
<tr>
<td>4</td>
<td>1JAN1975</td>
<td>03:55</td>
<td>61.920N</td>
<td>149.720W</td>
<td>N335</td>
<td>58.0</td>
<td>47.0</td>
<td>6.0</td>
<td>UP</td>
<td>-87.69</td>
</tr>
<tr>
<td>5</td>
<td>28FEB1970</td>
<td>21:27</td>
<td>60.640N</td>
<td>141.590W</td>
<td>N182</td>
<td>13.0</td>
<td>75.0</td>
<td>7.5</td>
<td>UP</td>
<td>62.90</td>
</tr>
<tr>
<td>6</td>
<td>6APR1974</td>
<td>01:53</td>
<td>54.870N</td>
<td>160.290W</td>
<td>N347</td>
<td>37.0</td>
<td>54.0</td>
<td>5.6</td>
<td>UP</td>
<td>51.44</td>
</tr>
</tbody>
</table>
Table 5.5 Normal Deviations from Mean, in a Normal Distribution, in Terms of Standard Deviation, as a Function of Cumulative Probability P
[Adapted From Newmark et al., 1973]

<table>
<thead>
<tr>
<th>P</th>
<th>$c = \frac{\text{deviation from mean}}{\text{standard deviation}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td>3.09023</td>
</tr>
<tr>
<td>0.998</td>
<td>2.87816</td>
</tr>
<tr>
<td>0.995</td>
<td>2.57583</td>
</tr>
<tr>
<td>0.990</td>
<td>2.32635</td>
</tr>
<tr>
<td>0.980</td>
<td>2.05375</td>
</tr>
<tr>
<td>0.970</td>
<td>1.88079</td>
</tr>
<tr>
<td>0.950</td>
<td>1.64485</td>
</tr>
<tr>
<td>0.900</td>
<td>1.28155</td>
</tr>
<tr>
<td>0.850</td>
<td>1.03643</td>
</tr>
<tr>
<td>0.800</td>
<td>0.84162</td>
</tr>
<tr>
<td>0.750</td>
<td>0.67449</td>
</tr>
<tr>
<td>0.700</td>
<td>0.52440</td>
</tr>
<tr>
<td>0.650</td>
<td>0.38532</td>
</tr>
<tr>
<td>0.600</td>
<td>0.25335</td>
</tr>
<tr>
<td>0.550</td>
<td>0.12566</td>
</tr>
</tbody>
</table>
Figure 5.1

AVERAGE ACCELERATION RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)

NORMALIZED PSEUDO-ACCELERATION

PERIOD, SECONDS

- damp=0.000
- damp=0.020
- damp=0.050
- damp=0.100
- damp=0.200
Figure 5.2

S.D. OF ACCELERATION RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)

NORMALIZED PSEUDO-ACCELERATION

PERIOD, SECONDS

--- damp=0.000 --- damp=0.020 --- damp=0.050
----- damp=0.100 ----- damp=0.200
85% OF ACCELERATION RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)
Figure 5.4

AVERAGE ACCELERATION RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)
Figure 5.5

S.D. OF ACCELERATION RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)
Figure 5.6

85% OF ACCELERATION RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)

Normalized Pseudo-Acceleration

Period, Seconds

--- damp=0.000 --- damp=0.020 --- damp=0.050
--- --- --- --- ---
--- --- --- --- ---
--- --- --- --- ---
--- --- --- --- ---
--- --- --- --- ---
--- --- --- --- ---
Figure 5.7

AVERAGE ACCELERATION RESPONSE SPECTRUM
(HORIZONTAL RECORDS WITH pkacc > 0.1g)
Figure 5.8

S.D. OF ACCELERATION RESPONSE SPECTRUM
(HORIZONTAL RECORDS WITH pkacc > 0.1g)
Figure 5.9

85% OF ACCELERATION RESPONSE SPECTRUM
(HORIZONTAL RECORDS WITH pkacc > 0.1g)
Figure 5.10

AVERAGE ACCELERATION RESPONSE SPECTRUM
(VERTICAL RECORDS WITH pkacc > 0.05g)

NORMALIZED PSEUDO-ACCELERATION

PERIOD, SECONDS

- damp=0.000
- damp=0.020
- damp=0.050
- damp=0.100
- damp=0.200
Figure 5.11

S.D. OF ACCELERATION RESPONSE SPECTRUM
(VERTICAL RECORDS WITH pkacc > 0.05g)
Figure 5.12

85% OF ACCELERATION RESPONSE SPECTRUM
(VERTICAL RECORDS WITH pkacc > 0.05g)
Figure 5.13

AVERAGE VELOCITY RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)

NORMAlIZED PSEUDO-VELOCITY

PERIOD, SECONDS

- damp=0.000
- damp=0.020
- damp=0.050
- damp=0.100
- damp=0.200
S.D. OF VELOCITY RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)
Figure 5.15

85% OF VELOCITY RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)
Figure 5.16

AVERAGE VELOCITY RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)

NORMALIZED PSEUDO VELOCITY

PERIOD, SECONDS

- damp=0.000
- damp=0.020
- damp=0.050
- damp=0.100
- damp=0.200
S.D. OF VELOCITY RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)

NORMAIZED PSEUDO-VELOCITY

PERIOD, SECONDS
Figure 5.18

85% OF VELOCITY RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)

Normalized Pseudo-Velocity

Period, Seconds

- damp=0.000
- damp=0.020
- damp=0.050
- damp=0.100
- damp=0.200

74
Figure 5.19

AVERAGE VELOCITY RESPONSE SPECTRUM
(HORIZONTAL RECORDS WITH pkacc > 0.1g)
Figure 5.20

S.D. OF VELOCITY RESPONSE SPECTRUM
(HORIZONTAL RECORDS WITH pkacc > 0.1g)
Figure 5.21

85% OF VELOCITY RESPONSE SPECTRUM
(HORIZONTAL RECORDS WITH pkacc > 0.1g)
Figure 5.22

AVERAGE VELOCITY RESPONSE SPECTRUM
(VERBAL RECORDS WITH pkacc > 0.05g)

NORMALIZED PSEUDO VELOCITY

PERIOD, SECONDS

damp=0.000
damp=0.020
damp=0.050

damp=0.100
damp=0.200
Figure 5.23

S.D. OF VELOCITY RESPONSE SPECTRUM
(VERTICAL RECORDS WITH pkacc > 0.05g)

NORMALIZED PSEUDO-VELOCITY

PERIOD, SECONDS

- damp=0.000
- damp=0.020
- damp=0.050
- damp=0.100
- damp=0.200
85% OF VELOCITY RESPONSE SPECTRUM
(VERTICAL RECORDS WITH pkacc > 0.05g)
Fig. 25a. Average acceleration response spectra for Japan earthquakes (after Hayashi et al. 1971 and Seed et al. 1976)

Fig. 25b. Average acceleration response spectra for California earthquakes (after Seed et al. 1976)
CHAPTER 6
SUMMARY AND CONCLUSIONS

Characteristics of strong motion associated with Alaska earthquakes differ from those in other parts of the country. The conducted study was mainly concerned with ground motions caused by Alaska earthquakes. It included collecting available acceleration records associated with these earthquakes; developing response spectra from each of these records; developing normalized vertical and horizontal response spectra (both mean and 85%) from the individual spectra; and comparing mean horizontal spectra to corresponding spectra from California and Japan earthquakes.

Records used in the computation of the normalized response spectra were limited to those that triggered after the arrival of S-waves. These records were grouped into four groups and the standardized response spectra associated with each of these groups were computed. All records of horizontal acceleration were included in the first group while the second group included all records of vertical accelerations. The third group included all records of horizontal accelerations with peak accelerations larger than 0.1g, and the fourth group included all records of vertical accelerations with peak accelerations larger than 0.05g. Unfortunately, the number of available records associated with groups 3 and 4 was very small and therefore the normalized spectra associated with these groups are of limited use. The normalized spectra, plotted as normalized pseudo accelerations vs period, associated with groups 1 and 2 are re-plotted in this Chapter in Figures 6–1 through 6–4. Note that the normalized pseudo acceleration is equal to the ratio of spectral acceleration to peak ground acceleration which is the same as the
amplification ratio.

The mean normalized spectrum derived in this study (Figure 6-1) was compared to the corresponding spectra from California and Japan earthquakes (Figure 5-25). It was concluded that as far as amplification is concerned, the spectra based on Japan and California earthquakes are, in general, more conservative (more amplification) than those associated with Alaska earthquakes. However, this conclusion should be considered preliminary because of the limited number of records used in this study, the large proportion of small amplitude maximum accelerations among these records, and the inability (due to lack of availability of enough records) to account for site effects on response spectra. It is therefore important to reconfirm this conclusion in the future as more significant records of Alaska earthquakes recorded on different site conditions become available.
Figure 6.1

AVERAGE ACCELERATION RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)

Figure 6.2

85% OF ACCELERATION RESPONSE SPECTRUM
(ALL HORIZONTAL COMPONENT RECORDS)
Figure 6.3

AVERAGE ACCELERATION RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)

Figure 6.4

85% OF ACCELERATION RESPONSE SPECTRUM
(ALL VERTICAL COMPONENT RECORDS)
CHAPTER 7
REFERENCES

Newmark, N.W., Hall, W.J., and Mohraz, B., 1973, "A study of Vertical and

APPENDIX A

ACCELERATION TIME HISTORIES FROM ALASKA EARTHQUAKES
TIME SERIES PLOT

FILE062.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE .
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 1 N180E SCALE=2.050(*) PER=.0550 DAMP=.59 .
EVENT: 1971 MAY 02 06:08 51.420N 177.210W 38KM M=6.8 IV .
EPIC DIST = 67KM AZIMUTH AT STN = 41
Peak values (cm/sec/sec): -114.65

Scaled Instrument
\[
\begin{align*}
\text{cm/sec/sec} \\
\end{align*}
\]

2may71 06:08:00.000

Seconds
TIME SERIES PLOT

FILE063.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 2 UP SCALE=1.625(*) PER=.0510 DAMP=.59.
EVENT: 1971 MAY 02 06:08 51.420N 177.210W 38KM M=6.8 IV.
EPIC DIST = 67KM AZIMUTH AT STN = 41
Peak values (cm/sec/sec): 63.66
TIME SERIES PLOT

FILE064.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 3 NO90E SCALE=1.875(*) PER=.0550 DAMP=.59.
EVENT: 1971 MAY 02 06:08 51.420N 177.210W 38KM M=6.8 IV.
EPIC DIST = 67KM AZIMUTH AT STN = 41.
Peak values (cm/sec/sec): 203.67.
TIME SERIES PLOT

FILE077.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 1 N180E SCALE=2.050(*) PER=.0550 DAMP=.59.
EVENT: 1974 AUG 13 03:46 51.490N 178.110W 47KM M=6.1 V.
DISTANCE 114KM AZIMUTH AT STN = 68
Peak values (cm/sec/sec): -21.94
TIME SERIES PLOT

FILE078.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 2 UP SCALE=1.625(*) PER=.0510 DAMP=.59.
EVENT: 1974 AUG 13 03:46 51.490N 178.110W 47KM M=6.1 V.
DISTANCE 114KM AZIMUTH AT STN = 68
Peak values (cm/sec/sec): -16.97

Scaled Instrument Bpm/sec/sec

13 Aug, 1974 03:46:00.000

Seconds
TIME SERIES PLOT

FILE079.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 3 N090E SCALE=1.875(*) PER=.0550 DAMP=.59.
EVENT: 1974 AUG 13 03:46 51.490N 178.110W 47KM M=6.1 V.
DISTANCE 114KM AZIMUTH AT STN = 68
Peak values (cm/sec/sec): 29.18
TIME SERIES PLOT

FILE080.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL
AR-240 CHANNEL 1 N180E SCALE=2.050(*) PER=.0550 DAMP=.59
EVENT: 1974 NOV 11 05:17 51.590N 178.080W 69KM M=6.1 VI
DISTANCE 108KM AZIMUTH AT STN = 73
Peak values (cm/sec/sec): -30.35

Scaled Instrument Response
cm/sec/sec

10nov74 05:17:00.000

Seconds
FILE081.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 2 UP SCALE=1.625(*) PER=.0510 DAMP=.59.
EVENT: 1974 NOV 11 05:17 51.590N 178.080W 69KM M=6.1 VI.
DISTANCE 108KM AZIMUTH AT STN = 73
Peak values (cm/sec/sec): -23.95
TIME SERIES PLOT

FILE082.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE .
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 3 NO90E SCALE=1.875(*) PER=.0550 DAMP=.59 .
DISTANCE 108KM AZIMUTH AT STN = 73
Peak values (cm/sec/sec): -45.72

Scaled Instrument
Response cm/sec/sec

10nov74 05:17:00.000
Seconds
TIME SERIES PLOT

FILE098.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE.
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 1 N180E SCALE=2.050(*) PER=.0550 DAMP=.59.
EVENT: 1976 FEB 22 07:21 51.570N 176.810W 61KM M=4.7 IV.
EPIC DIST = 38KM AZIMUTH AT STN = 24
Peak values (cm/sec/sec): -27.69
TIME SERIES PLOT

FILE099.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL
AR-240 CHANNEL 2 UP SCALE=1.625(*) PER=.0510 DAMP=.59
EVENT: 1976 FEB 22 07:21 51.570N 176.810W 61KM M=4.7 IV
EPIC DIST = 38KM AZIMUTH AT STN = 24
Peak values (cm/sec/sec): -22.95
TIME SERIES PLOT

FILE100.SMC

STATION: 2701 ADN* ADAK, NAVAL BASE .
51.880N 176.580W RK BASALT CONCRETE VAULT GROUND LEVEL .
AR-240 CHANNEL 3 NO90E SCALE=1.875(*) PER=.0550 DAMP=.59 .
EPIC DIST = 38KM AZIMUTH AT STN = 24
Peak values (cm/sec/sec): 65.70
TIME SERIES PLOT
F40.SMC

STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? N197 SCALE=??? PER=0.0196 DAMP=0.6750
EVENT: 1984 10 5 1546 51.871N -176.016W 68.0KM M=5.2
EPIC DIST = 43.2KM AZIMUTH AT STN = 90.5
Peak values (cm/sec/sec): 31.79
TIME SERIES PLOT
F42.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL N287 SCALE=?? PER=0.0196 DAMP=0.6200
EVENT: 1984 10 5 1546 51.871N -176.016W 68.0KM M=5.2
EPIC DIST = 43.2KM AZIMUTH AT STN = 90.5
Peak values (cm/sec/sec): 32.90

Scaled Instrument Response

cm/sec/sec

5Oct84 15:46:00.000

Seconds
TIME SERIES PLOT
F41.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? UP SCALE=?? PER=0.0194 DAMP=0.6400
EVENT: 1984 10 5 1546 51.871N -176.016W 68.0KM M=5.2
EPIC DIST = 43.2KM AZIMUTH AT STN = 90.5
Peak values (cm/sec/sec): 14.02

Scaled Instrument Response cm/sec/sec

5oct84 15:46:00.000

Seconds
TIME SERIES PLOT
F45.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? N287 SCALE=??? PER=0.0196 DAMP=0.6200
EVENT: 1984 11 19 1207 51.777N -175.272W 58.0KM M=5.7
EPIC DIST = 95.2KM AZIMUTH AT STN = 96.1
Peak values (cm/sec/sec): 36.64
TIME SERIES PLOT
F44.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? UP SCALE=??? PER=0.0194 DAMP=0.6400
EVENT: 1984 11 19 1207 51.777N -175.272W 58.0KM M=5.7
EPIC DIST = 95.2KM AZIMUTH AT STN = 96.1
Peak values (cm/sec/sec): 14.19

Scaled Instrument Response
cm/sec/sec

Seconds
18nov84 12:07:00.000
TIME SERIES PLOT
F43.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL N197 SCALE=??? PER=0.0196 DAMP=0.6750
EVENT: 1984 11 19 1207 51.777N -175.272W 58.0KM M=5.7
EPIC DIST = 95.2KM AZIMUTH AT STN = 96.1
Peak values (cm/sec/sec): -43.02
TIME SERIES PLOT
F72.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? N287 SCALE=?? PER=0.0196 DAMP=0.6200
EVENT: 1985 12 28 0439 51.629N -177.166W 52.0KM M=5.2
EPIC DIST = 45.5KM AZIMUTH AT STN = N233.0
Peak values (cm/sec/sec): 40.82

Scaled Instrument Response cm/sec/sec

28dec85 04:39:00.000

Seconds
TIME SERIES PLOT
F71.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? UP SCALE=??? PER=0.0194 DAMP=0.6400
EVENT: 1985 12 28 0439 51.629N -177.166W 52.0KM M=5.2
EPIC DIST = 45.5KM AZIMUTH AT STN = N233.0
Peak values (cm/sec/sec): 22.74

Scaled Instrument Response
cm/sec/sec

28Dec85 04:39:00.000
Seconds
TIME SERIES PLOT
F70.SMC

STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL 6 N197 SCALE=??? PER=0.0196 DAMP=0.6750
EVENT: 1985 12 28 0439 51.629N -177.166W 52.0KM M=5.2
EPIC DIST = 45.5KM AZIMUTH AT STN = N233.0
Peak values (cm/sec/sec): -48.85

Scaled Instrument Response
cm/sec/sec

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

28dec85 04:39:00.000

Seconds
TIME SERIES PLOT
F212.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? N197 SCALE=?? PER=0.0196 DAMP=0.6750
EVENT: 1986 3 2 2042 51.348N -176.715W 33.0KM M=5.0
EPIC DIST = 59.0KM AZIMUTH AT STN = N184.9
Peak values (cm/sec/sec): -25.37

Scaled Instrument Response cm/sec/sec

2mar86 20:42:00.000

Seconds
TIME SERIES PLOT
F211.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? UP SCALE=??? PER=0.0194 DAMP=0.6400
EVENT: 1986 3 2 2042 51.348N -176.715W 33.0KM M=5.0
EPIC DIST = 59.0KM AZIMUTH AT STN = N184.9
Peak values (cm/sec/sec): -13.42
TIME SERIES PLOT
F210.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -175.642W HANGAR BLDG
AR-240 CHANNEL ? N287 SCALE=??? PER=0.0196 DAMP=0.6200
EVENT: 1986 3 2 2042 51.348N -176.715W 33.0KM M=5.0
EPIC DIST = 59.0KN AZIMUTH AT STN = N184.9
Peak values (cm/sec/sec): 22.75

Scaled Instrument Response cm/sec/sec

23.0

-23.0

2mar86 20:42:00.000

Seconds
TIME SERIES PLOT
F209.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? N197 SCALE=??? PER=0.0196 DAMP=0.6750
EVENT: 1986 5 7 2247.51 51.520N -174.776W 33.0KM M=7.9
EPIC DIST = 135.1KM AZIMUTH AT STN = N106.3
Peak values (cm/sec/sec): 223.18
TIME SERIES PLOT
F208.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? UP SCALE=??? PER=0.0194 DAMP=0.6400
EVENT: 1986 5 7 2247 51.520N -174.776W 33.0KM M=7.9
EPIC DIST = 135.1KM AZIMUTH AT STN = N106.3
Peak values (cm/sec/sec): 100.32

Scaled Instrument Response
cm/sec/sec

7may86 22:47:00.000
Seconds
TIME SERIES PLOT
F207.SMC
STATION: 2701 ADN - US NAVAL BASE, ADAK ALASKA
51.876N -176.642W HANGAR BLDG
AR-240 CHANNEL ? N287 SCALE=?? PER=0.0196 DAMP=0.6200
EVENT: 1986 5 7 2247 51.520N -174.776W 33.0KM M=7.9
EPIC DIST = 135.1KM AZIMUTH AT STN = N106.3
Peak values (cm/sec/sec): -172.74
TIME SERIES PLOT

FILE083.SMC

STATION: 2702 AMU ANCHORAGE, GOULE HALL.
61.189N 149.801W SL GLACIAL TILL GRND LEV 2 STORY BLDG.
AR-240 CHANNEL 1 N315E SCALE=1.925(*) PER=.0520 DAMP=.59.
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V.
EPIC DIST = 81KM AZIMUTH AT STN = 183
Peak values (cm/sec/sec): 60.58
TIME SERIES PLOT

FILE084.SMC

STATION: 2702 AMU ANCHORAGE, GOULE HALL.
61.189N 149.801W SL GLACIAL TILL GRND LEV 2 STORY BLDG.
AR-240 CHANNEL 2 UP SCALE=1.900(*) PER=.0560 DAMP=.59.
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V.
EPIC DIST = 81KM AZIMUTH AT STN = 183
Peak values (cm/sec/sec): 35.76
TIME SERIES PLOT

FILE085.SMC

STATION: 2702 AMU ANCHORAGE, GOULE HALL.
61.189N 149.801W SL GLACIAL TILL GRND LEV 2 STORY BLDG.
AR-240 CHANNEL 3 N225E SCALE=1.900(*) PER=.0530 DAMP=.59.
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V.
EPIC DIST = 81KM AZIMUTH AT STN = 183
Peak values (cm/sec/sec): 91.98
TIME SERIES PLOT
F75.SMC
STATION: AMU 2702 - ANCHORAGE, ALASKA
61.189N -149.800W 2-STORY BLDG
CHANNEL ? N270 SCALE=?? PER=0.0390 DAMP=0.5900
EVENT: 1985 12 30 1241 61.541N -150.340W 62.0KM M=5.6
EPIC DIST = 48.8KM AZIMUTH AT STN = N323.9
Peak values (cm/sec/sec): 77.41

Scaled Instrument Response
(cm/sec/sec)

30dec85 12:41:00.000
Seconds
TIME SERIES PLOT
F74.SMC
STATION: AMU 2702 - ANCHORAGE, ALASKA
61.189N -149.800W 2-STORY BLDG
?????? CHANNEL ? UP SCALE=??? PER=0.0390 DAMP=0.6000
EVENT: 1985 12 30 1241 61.541N -150.340W 62.0KM M=5.6
EPIC DIST = 48.8KM AZIMUTH AT STN = N323.9
Peak values (cm/sec/sec): 16.73

Scaled Instrument Response
cm/sec/sec

30dec85 12:41:00.000
Seconds
TIME SERIES PLOT
F73.SMC
STATION: AMU 2702 - ANCHORAGE, ALASKA
61.189N -149.800W 2-STORY BLDG
?????? CHANNEL ? N360 SCALE=??? PER=0.0370 DAMP=0.5800
EVENT: 1985 12 30 1241 61.541N -150.340W 62.0KM M=5.6
EPIC DIST = 48.8KM AZIMUTH AT STN = N323.9
Peak values (cm/sec/sec): 71.53

Scaled Instrument
acceleration

30dec85 12:41:00.000
Seconds
TIME SERIES PLOT

FILE086.SMC

STATION: 2703 ANH ANCHORAGE, AK NATIVE MEDICAL CENTER .
61.190N 149.890W SL GLACIAL OUTWASH BASEMENT 3 STOR BLDG
AR-240 CHANNEL 1 N000E SCALE=1.900(*) PER=.0580 DAMP=.62 .
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V .
 EPIC DIST = 82KM AZIMUTH AT STN = 186
 Peak values (cm/sec/sec): -74.77
FILE087.SMC

STATION: 2703 ANH ANCHORAGE, AK NATIVE MEDICAL CENTER
61.190N 149.890W SL GLACIAL OUTWASH BASEMENT 3 STOR BLDG
AR-240 CHANNEL 2 UP SCALE=1.900(*) PER=.0510 DAMP=.59
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V
EPIC DIST = 82KM AZIMUTH AT STN = 186
Peak values (cm/sec/sec): -48.48

Scaled Instrument Response

Sec/2

0 2 4 6 8 10 12 14 16 18 20 22 24

1 jan75 03:55:000.000

Seconds
TIME SERIES PLOT

FILE088.SMC

STATION: 2703 ANH ANCHORAGE, AK NATIVE MEDICAL CENTER
61.190N 149.890W SL GLACIAL OUTWASH BASEMENT 3 STOR BLDG
AR-240 CHANNEL 3 N270E SCALE=1.900(*) PER=.0590 DAMP=.62
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V
EPIC DIST = 82KM AZIMUTH AT STN = 186
Peak values (cm/sec/sec): -86.98
TIME SERIES PLOT

FILE089.SMC

STATION: 2716 AWH ANCHORAGE, WESTWARD HOTEL
61.220N 149.890W SL GLACIAL OUTWASH BASEMENT 22 STOR BLD
SMA-1 CHANNEL 1 N135E SCALE=1.730 PER=.0380 DAMP=.55
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V
EPIC DIST = 79KM AZIMUTH AT STN = 187
Peak values (cm/sec/sec): 49.15

Scaled Instrument

cm/sec/sec

0 5 10 15 20 25 30 35 40

1Jan75 03:55:00.000

Seconds
TIME SERIES PLOT

FILE090.SMC

STATION: 2716 AWH ANCHORAGE, WESTWARD HOTEL.
61.220N 149.890W SL GLACIAL OUTWASH BASEMENT 22 STOR BLD
SMA-1 CHANNEL 2 UP SCALE = 1.670 PER = .0370 DAMP = .53
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M = 6.0 V
EPIC DIST = 79KM AZIMUTH AT STN = 187
Peak values (cm/sec/sec): -19.62

Scaled Instrument Response
cm/sec/sec

1Jan75 03:55:00.000

Seconds
TIME SERIES PLOT

FILE091.SMC

STATION: 2716 AWH ANCHORAGE, WESTWARD HOTEL.
61.220N 149.890W SL GLACIAL OUTWASH BASEMENT 22 STOR BLD
SMA-1 CHANNEL 3 NO45E SCALE=1.700 PER=.0380 DAMP=.57.
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V.
EPIC DIST = 79KM AZIMUTH AT STN = 187
Peak values (cm/sec/sec): 44.91
TIME SERIES PLOT
F57.SMC
STATION: BKJ 2773 - BIG KONIUJI, ALASKA
55.160N -159.565W FREE-FIELD, CONCRETE PAD
?????? CHANNEL ? N345 SCALE=??? PER=0.0386 DAMP=0.6500
EVENT: 1985 10 9 0934 54.736N -159.468W 15.0KM M=6.5
EPIC DIST = 47.7KM AZIMUTH AT STN = N172.5
Peak values (cm/sec/sec): 49.04

Scaled Instrument Response (cm/sec/sec)

9oct85 09:34:00.000

Seconds
TIME SERIES PLOT
F56.SMC
STATION: BKJ 2773 - BIG KONIUJI, ALASKA
55.160N -159.565W FREE-FIELD, CONCRETE PAD
?????? CHANNEL ?? UP SCALE=?? PER=0.0373 DAMP=0.6150
EVENT: 1985 10 9 0934 54.736N -159.468W 15.0KM M=6.5
EPIC DIST = 47.7KM AZIMUTH AT STN = N172.5
Peak values (cm/sec/sec): -39.87

Scaled Instrument Response
cm/sec/sec

9oct85 09:34:00.000

Seconds
TIME SERIES PLOT
F55.SMC
STATION: BKJ 2773 - BIG KONIUJI, ALASKA
55.160N -159.565W FREE-FIELD, CONCRETE PAD
?????? CHANNEL 7 N65 SCALE=??? PER=0.0401 DAMP=0.6150
EVENT: 1985 10 9 0934 54.736N -159.468W 15.0KM M=6.5
EPIC DIST = 47.7KN AZIMUTH AT STN = N172.5
Peak values (cm/sec/sec): -34.39
TIME SERIES PLOT
F99.SMC
STATION: BKJ 2773 - BIG KONIUJI, ALASKA
55.160N -159.565W FREE-FIELD, CONCRETE PAD
?????? CHANNEL ? N345 SCALE=??? PER=0.0398 DAMP=0.6350
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 45.1KM AZIMUTH AT STN = N207.1
Peak values (cm/sec/sec): -25.08
TIME SERIES PLOT
F98.SMC
STATION: BKJ 2773 - BIG KONIUJI, ALASKA
55.160N -159.565W FREE-FIELD, CONCRETE PAD
?????? CHANNEL ? UP SCALE=??? PER=0.0357 DAMP=0.5800
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 45.1KM AZIMUTH AT STN = N207.1
Peak values (cm/sec/sec): 15.65

Scaled Instrument Response

2may87 19:22:00.000
Seconds
TIME SERIES PLOT
F97.SMC
STATION: BKJ 2773 - BIG KONIUJI, ALASKA
55.160N -159.565W FREE-FIELD, CONCRETE PAD
?????? CHANNEL ?? N75 SCALE=??? PER=0.0369 DAMP=0.6200
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 45.1KM AZIMUTH AT STN = N207.1
Peak values (cm/sec/sec): -28.61

2may87 19:22:00.000

Seconds
TIME SERIES PLOT

FILE124.SMC

STATION: 2776 CNB CHERNABURA ISLAND
54.820N 159.588W CEMENTED TO WEATHERED GRANITE BEDROCK
SMA-1 2038 CHANNEL 1 NO70F SCALE=1.720 PER=.0390 DAMP=.60
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V
EPIC DIST = 46KM AZIMUTH AT STN = 281
Peak values (cm/sec/sec): 46.92

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT

FILE125.SMC

STATION: 2776 CNB CHERNABURA ISLAND
54.820N 159.588W CEMENTED TO WEATHERED GRANITE BEDROCK
SMA-1 2038 CHANNEL 2 UP SCALE=1.860 PER=.0390 DAMP=.60
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V
EPIC DIST = 46KM AZIMUTH AT STN = 281
Peak values (cm/sec/sec): -22.89

Scaled Instrument
cm/sec/sec

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT

FILE126.SMC

STATION: 2776 CNB CHERNABURA ISLAND.
54.820N 159.588W CEMENTED TO WEATHERED GRANITE BEDROCK.
SMA-1 2038 CHANNEL 3 N340E SCALE=1.660 PER=.0360 DAMP=.60.
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V.
EPIC DIST = 46KM AZIMUTH AT STN = 281.
Peak values (cm/sec/sec): 40.49.

Scaled Instrument
Response cm/sec/sec

14feb83 03:20:00.000
Seconds
TIME SERIES PLOT

FILE136.SMC

STATION: 2776 CNB CHERNABURA ISLAND .
54.820N 159.588W CEMENTED TO WEATHERED GRANITE BEDROCK .
SMA-1 2038 CHANNEL 1 NO70E SCALE=1.720 PER=.0390 DAMP=.60 .
EPIC DIST = 48KM AZIMUTH AT STN = 265
Peak values (cm/sec/sec): 16.69

Scaled Instrument

cm/sec/sec

-17.0

0

17.0

14feb83 08:10:00.000

Seconds
TIME SERIES PLOT

FILE137.SMC

STATION: 2776 CNB CHERNABURA ISLAND
54.820N 159.588W CEMENTED TO WEATHERED GRANITE BEDROCK
SMA-1 2038 CHANNEL 2 UP SCALE=1.860 PER=.0390 DAMP=.60
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V
EPIC DIST = 48KM AZIMUTH AT STN = 265
Peak values (cm/sec/sec): -16.60

Scaled Instrument
Response

17.0
-17.0

14feb83 08:10:00.000

Seconds
STATION: 2776 CNB CHERNABURA ISLAND.
54.820N 159.588W CEMENTED TO WEATHERED GRANITE BEDROCK.
SMA-1 2038 CHANNEL 3 N340E SCALE=1.660 PER=.0360 DAMP=.60.
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V.
EPIC DIST = 48KM AZIMUTH AT STN = 265.
Peak values (cm/sec/sec): 20.23.

TIME SERIES PLOT
FILE138.SMC
TIME SERIES PLOT
F51.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? N343 SCALE=?? PER=0.0529 DAMP=0.5900
EVENT: 1985 9 25 1629 54.709N -159.728W 28.0KM M=4.4
EPIC DIST = 15.3KM AZIMUTH AT STN = N216.0
Peak values (cm/sec/sec): -14.70

Scaled Instrument
A/m/sec/sec

24sep85 16:29:00.000
Seconds
TIME SERIES PLOT
F50.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? UP SCALE=?? PER=0.0514 DAMP=0.5700
EVENT: 1985 9 25 1629 54.709N -159.728W 28.0KM M=4.4
EPIC DIST = 15.3KM AZIMUTH AT STN = N216.0
Peak values (cm/sec/sec): 6.82
TIME SERIES PLOT
F49.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? N73 SCALE=?? PER=0.0543 DAMP=0.6100
EVENT: 1985 9 25 1629 54.709N -159.728W 28.0KM M=4.4
EPIC DIST = 15.3KM AZIMUTH AT STN = N216.0
Peak values (cm/sec/sec): -8.19

Scaled Instrument Response

-8.20- cm/sec/sec

24sep85 16:29:00.000

Seconds
TIME SERIES PLOT
F66.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? N343 SCALE=?? PER=0.0529 DAMP=0.5900
EVENT: 1985 10 9 1416 54.812N -159.466W 20.0KM M=4.5
EPIC DIST = 7.9KM AZIMUTH AT STN = 96.7
Peak values (cm/sec/sec): -8.78
TIME SERIES PLOT

F65.SMC

STATION: 2776 CNE - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? UP SCALE=?? PER=0.0514 DAMP=0.5700
EVENT: 1985 10 9 1416 54.812N -159.466W 20.0KM M=4.5
EPIC DIST = 7.9KM AZIMUTH AT STN = 96.7
Peak values (cm/sec/sec): 6.50

9oct85 14:16:00.000

Seconds
TIME SERIES PLOT
F64.SMC
STATION: 2776 CNE - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL 7N73 SCALE=??? PER=0.0543 DAMP=0.6100
EVENT: 1985 10 9 1416 54.812N -159.466W 20.0KM M=4.5
EPIC DIST = 7.9KM AZIMUTH AT STN = 96.7
Peak values (cm/sec/sec): 5.07

-5.10-5.10

Scaled Instrument Response cm/sec/sec

9oct85 14:16:00.000

Seconds
TIME SERIES PLOT
P67.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? N73 SCALE=?? PER=0.0541 DAMP=0.5900
EVENT: 1985 11 14 2218 54.684N -159.549W 19.0KM M=5.8
EPIC DIST = 15.4KM AZIMUTH AT STN = N170.5
Peak values (cm/sec/sec): 21.59

Scaled Instrument Response (cm/sec/sec)

13nov85 22:18:00.000

Seconds
TIME SERIES PLOT
F69.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? N343 SCALE=??? PER=0.0524 DAMP=0.5800
EVENT: 1985 11 14 2218 54.684N -159.549W 19.0KM M=5.8
EPIC DIST = 15.4KM AZIMUTH AT STN = N170.5
Peak values (cm/sec/sec): -25.04

Scaled Instrument
Response
(cm/sec/sec)

13nov85 22:18:00.000

Seconds
TIME SERIES PLOT
F68.SMC

STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTERED TO BEDROCK
SMA-1 CHANNEL ? UP SCALE=??? PER=0.0513 DAMP=0.5600
EVENT: 1985 11 14 2218 54.684N -159.549W 19.0KM M=5.8
EPIC DIST = 15.4KM AZIMUTH AT STN = N170.5
Peak values (cm/sec/sec): -16.91

13nov85 22:18:00.000

Seconds
TIME SERIES PLOT
F105.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? N343 SCALE=?? PER=0.0515 DAMP=0.5400
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 19.2KM AZIMUTH AT STN = N263.4
Peak values (cm/sec/sec): -26.01
TIME SERIES PLOT
F104.SMC

STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL ? UP SCALE=??? PER=0.0552 DAMP=0.5450
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 19.2KM AZIMUTH AT STN = N263.4
Peak values (cm/sec/sec): -22.27

Scaled Instrument Response
23.0 cm/sec/sec
-23.0
2may87 19:22:00.000

Seconds
TIME SERIES PLOT
F103.SMC
STATION: 2776 CNB - CHERNABURA ISLAND, AK
54.820N -159.588W FREE-FIELD, CEMENTED TO BEDROCK
SMA-1 CHANNEL 773 SCALE=??? PER=0.0600 DAMP=0.2400
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 19.2KM AZIMUTH AT STN = N263.4
Peak values (cm/sec/sec): 54.30

Scaled Instrument response cm/sec/sec

Seconds

2may87 19:22:00.000
TIME SERIES PLOT

FILE038.SMC

STATION: 2706 MES CORDOVA, MT. ECCLES SCHOOL.
60.540N 145.750W RK METAMORPHIC GROUND LEV 2 STORY BLDG.
AR-240 CHANNEL 1 N286E SCALE=1.900(*) PER=.0510 DAMP=.59 .
EVENT: 1964 JUN 05 09:50 60.350N 145.870W 15KM M=5.2 (?).
EPIC DIST = 22KM AZIMUTH AT STN = 17
Peak values (cm/sec/sec): -29.95
TIME SERIES PLOT

FILE039.SMC

STATION: 2706 MES CORDOVA, MT. ECCLES SCHOOL.
60.540N 145.750W RK METAMORPHIC GROUND LEV 2 STORY BLDG.
AR-240 CHANNEL 2 UP SCALE=1.900(*) PER=.0510 DAMP=.61.
EVENT: 1964 JUN 05 09:50 60.350N 145.870W 16KM M=5.2 (?).
EPIC DIST = 22KM AZIMUTH AT STN = 17
Peak values (cm/sec/sec): -11.55
TIME SERIES PLOT

FILE040.SMC

STATION: 2706 MES CORDOVA, MT. ECCLES SCHOOL.
60.540N 145.750W RK METAMORPHIC GROUND LEV 2 STORY BLDG.
AR-240 CHANNEL 3 N196E SCALE=1.900(*) PER=.0510 DAMP=.59.
EVENT: 1964 JUN 05 09:50 60.350N 145.870W 16KM M=5.2 (?).
EPIC DIST = 22KM AZIMUTH AT STN = 17
Peak values (cm/sec/sec): 34.18

Scaled Instrument cm/sec/sec

5jun64 09:50:00.000

Seconds
TIME SERIES PLOT

FILE041.SMC

STATION: 2710 KDIN* KODIAK, U.S. NAVAL STATION
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL
AR-240 CHANNEL 1 N270E SCALE=1.900(*) PER=.0520 DAMP=.61
EVENT: 1964 JUN 05 22:06 58.140N 152.180W 13KM M=5.0 (?)
EPIC DIST = 47KM AZIMUTH AT STN = 203
Peak values (cm/sec/sec): -28.88

Scaled Instrument Response
cm/sec/sec

5Jun64 22:06:00.000

Seconds
TIME SERIES PLOT

FILE042.SMC

STATION: 2710 KDN* KODIAK, U.S. NAVAL STATION .
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL .
AR-240 CHANNEL 2 UP SCALE=1.900(*) PER=.0520 DAMP=.59 .
EVENT: 1964 JUN 05 22:06 58.140N 152.180W 13KM M=5.0 (?).
EPIC DIST = 47KM AZIMUTH AT STN = 203
Peak values (cm/sec/sec): -13.84
TIME SERIES PLOT

FILE043.SMC

STATION: 2710 KDN* KODIAK, U.S. NAVAL STATION.
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 3 N180E SCALE=1.900(*) PER=.0520 DAMP=.61.
EVENT: 1964 JUN 05 22:06 58.140N 152.180W 13KM M=5.0 (?).
EPIC DIST = 47KM AZIMUTH AT STN = 203
Peak values (cm/sec/sec): -20.39

Scaled Instrument
Res/256

cm/sec/sec

-21.0

21.0

5jun64 22:06:00.000

Seconds
TIME SERIES PLOT

FILE047.SMC

STATION: 2710 KDN* KODIAK, U.S. NAVAL STATION .
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL .
EPIC DIST = 60KM AZIMUTH AT STN = 180
Peak values (cm/sec/sec): -16.70
TIME SERIES PLOT

FILE048.SMC

STATION: 2710 KDN* KODIAK, U.S. NAVAL STATION.
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 2 UP SCALE=1.900(*) PER=.0495 DAMP=.57.
EPIC DIST = 60KM AZIMUTH AT STN = 180
Peak values (cm/sec/sec): -15.55
TIME SERIES PLOT

FILE049.SMC

STATION: 2710 KDN* KODIAK, U.S. NAVAL STATION .
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL .
EPIC DIST = 60KM AZIMUTH AT STN = 180
Peak values (cm/sec/sec): 21.54

Scaled Instrument Response cm/sec/sec

3sep65 14:32:00.000

Indices
TIME SERIES PLOT

FILE050.SMC

STATION: 2710 KDNN* KODIAK, U.S. NAVAL STATION
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL
AR-240 CHANNEL 1 N350E SCALE=1.900(*) PER=.0512 DAMP=.64
EVENT: 1965 DEC 22 19:41 58.350N 153.130W 42KM M=6.8 V
EPIC DIST = 77KM AZIMUTH AT STN = 151
Peak values (cm/sec/sec): 36.09

Scaled Instrument

37.0

-37.0

22dec65 19:41:00.000

Seconds
TIME SERIES PLOT

FILE051.SMC

STATION: 2710 KDN* KODIAK, U.S. NAVAL STATION.
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 2 UP SCALE=1.900(*) PER=.0516 DAMP=.63.
EVENT: 1965 DEC 22 19:41 58.350N 153.130W 42KM M=6.8 V.
EPIC DIST = 77KM AZIMUTH AT STN = 151.
Peak values (cm/sec/sec): -14.93
TIME SERIES PLOT

FILE052.SMC

STATION: 2710 KDN KODIAK, U.S. NAVAL STATION.
57.750N 152.490W RK SLATE CONCRETE VAULT GROUND LEVEL.
AR-240 CHANNEL 3 N260E SCALE=1.900(*) PER=.0517 DAMP=.43.
EVENT: 1965 DEC 22 19:41 58.350N 153.130W 42KM M=6.8 V.
EPIC DIST = 77KM AZIMUTH AT STN = 151.
Peak values (cm/sec/sec): -37.95.
TIME SERIES PLOT

FILE059.SMC

STATION: 2739 KDS KODIAK, USCG CENTRAL SUPPLY
57.750N 152.500W BASEMENT
AR-240 CHANNEL 1 N350E SCALE=1.883(*) PER=.0519 DAMP=.58
EPIC DIST = 97KM AZIMUTH AT STN = 66
Peak values (cm/sec/sec): -21.24

Scaled Instrument
response cm/sec/sec

-22.0

0 2 4 6 8 10 12 14 16 18 20
11mar70 22:38:00.000

Seconds
TIME SERIES PLOT

FILE060.SMC

STATION: 2739 KDS KODIAK, USCG CENTRAL SUPPLY .
57.750N 152.500W BASEMENT .
AR-240 CHANNEL 2 UP SCALE=1.953(*) PER=.0542 DAMP=.59 .
EPIC DIST = 97KM AZIMUTH AT STN = 66
Peak values (cm/sec/sec): 8.59
TIME SERIES PLOT

FILE061.SMC

STATION: 2739 KDS KODIAK, USCG CENTRAL SUPPLY.
57.750N 152.500W BASEMENT.
AR-240 CHANNEL 3 N260E SCALE=1.893(*) PER=.0525 DAMP=.58.
EPIC DIST = 97KM AZIMUTH AT STN = 66
Peak values (cm/sec/sec): 42.05
TIME SERIES PLOT

FILE107.SMC

STATION: 2734 ICY ICY BAY, GULF TIMBER CO. .
59.970N 141.640W GLACIAL DEPOSITS GRND LVL 1 STORY BLDG
SMA-1 CHANNEL 1 N180E PER=.0370 DAMP=.61 .
EPIC DIST = 75KM AZIMUTH AT STN = 182
Peak values (cm/sec/sec): -171.41

Scaled Instrument
Response cm/sec/sec

28feb79 21:27:00.000

Seconds
TIME SERIES PLOT
FILE108.SMC

STATION: 2734 ICY ICY BAY, GULF TIMBER CO.
59.970N 141.640W GLACIAL DEPOSITS GRND_LVL 1 STORY BLDG
SMA-1 CHANNEL 2 UP PER= .0370 DAMP= .57
EVENT: 1979 FEB 28 21:27 60.640N 141.590W 13KM M=7.3
EPIC DIST = 75KM AZIMUTH AT STN = 182
Peak values (cm/sec/sec): 62.90

Scaled Instrument Response
cm/sec/sec

28feb79 21:27:00.000

Seconds
TIME SERIES PLOT
FILE109.SMC

STATION: 2734 ICY ICY BAY, GULF TIMBER CO.
59.970N 141.640W GLACIAL DEPOSITS GRND LVL 1 STORY BLDG
SMA-1 CHANNEL 3 NC90E PER= .0380 DAMP= .61
EVENT: 1979 FEB 28 21:27 60.640N 141.590W 13KM M=7.3
EPIC DIST = 75KM AZIMUTH AT STN = 182
Peak values (cm/sec/sec): -96.33
TIME SERIES PLOT
FILE110:SMC

STATION: 2765 MDY MUNDAY CREEK.
60.020N 141.970W RK YAKATAGA FORMATION GROUND LEVEL.
SMA-1 2700 CHANNEL 1 NO00E SCALE=7.600 PER=.0781 DAMP=.60.
EPIC DIST = 72KM AZIMUTH AT STN = 197
Peak values (cm/sec/sec): 62.81
TIME SERIES PLOT
FILE111.SMC

STATION: 2765 MDY MUNDAY CREEK
60.020N 141.970W RK YAKATAGA FORMATION GROUND LEVEL
SMA-1 2700 CHANNEL 3 N270E SCALE=7.440 PER=.0769 DAMP=.60
EVENT: 1979 FEB 28 21:27 60.640N 141.590W 13KM M=7.3
EPIC DIST = 72KM AZIMUTH AT STN = 197
Peak values (cm/sec/sec): -40.84
TIME SERIES PLOT
F48.SMC
STATION: NGI 2774 - NAGAI, ALASKA
55.039N -160.069W CONCRETE PAD
?????? CHANNEL ? N250 SCALE=?? PER=0.0388 DAMP=0.6200
EVENT: 1985 5 21 0113 54.978N -160.360W 47.0KM M=4.3
EPIC DIST = 19.8KM AZIMUTH AT STN = N250.0
Peak values (cm/sec/sec): 23.39
TIME SERIES PLOT

F47.SMC

STATION: NGI 2774 - NAGAI, ALASKA
55.039N -160.069W CONCRETE PAD

?????? CHANNEL ? UP SCALE=??? PER=0.0383 DAMP=0.6000

EVENT: 1985 5 21 0113 54.978N -160.360W 47.0KM M=4.3
EPIC DIST = 19.8KM AZIMUTH AT STN = N250.0

Peak values (cm/sec/sec): 20.46

Scaled Instrument Response cm/sec/sec

21may85 01:13:00.000

Seconds
TIME SERIES PLOT
T46.SMC
STATION: NGI 2774 - NAGAI, ALASKA
55.039N -160.069W CONCRETE PAD
?????? CHANNEL ?? N340 SCALE=?? PER=0.0396 DAMP=0.6100
EVENT: 1985 5 21 0113 54.978N -160.360W 47.0KM M=4.3
EPIC DIST = 19.8KM AZIMUTH AT STN = N250.0
Peak values (cm/sec/sec): 38.26

Scaled Instrument response

cm/sec/sec

21may85 01:13:00.000

Seconds
TIME SERIES PLOT
F102.SMC
STATION: NGI 2774 - NAGAI, ALASKA
55.039N -160.069W CONCRETE PAD
???'?? POINT NUMBER & SCALE=??? PER=0.0405 DAMP=0.5850
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 29.2KM AZIMUTH AT STN = N156.0
Peak values (cm/sec/sec): -35.11

Scaled Instrument Response
cm/sec/sec

-36.0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

2may87 19:22:00.000

Seconds
TIME SERIES PLOT
F101.SMC
STATION: NGI 2774 - NAGAI, ALASKA
55.039N -160.069W CONCRETE PAD
?????? CHANNEL ? UP SCALE=??? PER=0.0391 DAMP=0.5600
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 29.2KM AZIMUTH AT STN = N156.0
Peak values (cm/sec/sec): 15.27

Scaled Instrument Response
cm/sec/sec

-16.0 -1.0 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0
2may87 19:22:00.000

Seconds
TIME SERIES PLOT
F100.SMC
STATION: NGI 2774 - NAGAI, ALASKA
55.039N -160.069W CONCRETE PAD
?????? CHANNEL ? N357 SCALE=?? PER=0.0389 DAMP=0.5600
EVENT: 1987 5 2 1922 54.800N -159.884W 28.0KM M=5.3
EPIC DIST = 29.2KM AZIMUTH AT STN = N156.0
Peak values (cm/sec/sec): -21.35
TIME SERIES PLOT

FILE127.SMC

STATION: 2789 PRS PIRATE SHAKE, NAGAI ISLAND .
55.231N 159.855W IN SOIL OVER BEDROCK; CLOSE TO CLIFF .
SMA-1 1064 CHANNEL 1 NO72E SCALE=3.800 PER=.0540 DAMP=.60 .
EPIC DIST = 83KM AZIMUTH AT STN = 311
Peak values (cm/sec/sec): 11.94

14feb83 03:20:00.000
Seconds

Scaled Instrument Response
cm/sec/sec

12.0 0
-12.0
TIME SERIES PLOT

FILE128.SMC

STATION: 2789 PRS PIRATE SHAKE, NAGAI ISLAND.
55.231N 159.855W IN SOIL OVER BEDROCK; CLOSE TO CLIFF.
SMA-1 1064 CHANNEL 2 UP SCALE=3.360 PER=.0510 DAMP=.60.
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V.
EPIC DIST = 83KM AZIMUTH AT STN = 311.
Peak values (cm/sec/sec): -5.72

Scaled Instrument response
(cm/sec/sec)

-5.80

-5.80

0

2

4

6

8

10

12

14

16

18

20

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT

FILE129.SMC

STATION: 2789 PRS PIRATE SHAKE, NAGAI ISLAND
55.231N 159.855W IN SOIL OVER BEDROCK; CLOSE TO CLIFF
SMA-1 1064 CHANNEL 3 N342E SCALE=3.620 PER=.0560 DAMP=.60
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V
EPIC DIST = 83KM AZIMUTH AT STN = 311
Peak values (cm/sec/sec): -24.46

Scaled Instrument Response cm/sec/sec

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT

FILE139.SMC

STATION: 2789 PRS PIRATE SHAKE, NAGAI ISLAND.
55.231N 159.855W IN SOIL OVER BEDROCK; CLOSE TO CLIFF.
SMA-1 1064 CHANNEL 1 NO72E SCALE=3.800 PER=.0540 DAMP=.60.
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V.
EPIC DIST = 77KM AZIMUTH AT STN = 303
Peak values (cm/sec/sec): 14.78
STATION: 2789 PRS PIRATE SHAKE, NAGAI ISLAND.
55.231N 159.855W IN SOIL OVER BEDROCK; CLOSE TO CLIFF.
SMA-1 1064 CHANNEL 2 UP SCALE=3.360 PER=.0510 DAMP=.60.
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V.
EPIC DIST = 77KM AZIMUTH AT STN = 303
Peak values (cm/sec/sec): 10.79
TIME SERIES PLOT

FILE141.SMC

STATION: 2789 PRS PIRATE SHAKE, NAGAI ISLAND.
55.231N 159.855W IN SOIL OVER BEDROCK; CLOSE TO CLIFF.
SMA-1 1064 CHANNEL 3 N342E SCALE=3.620 PER=.0560 DAMP=.60.
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V.
EPIC DIST = 77KM AZIMUTH AT STN = 303
Peak values (cm/sec/sec): -13.64
STATION: 2744 SAN SAND POINT, SCHOOL.
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG.
SMA-1 202 CHANNEL 1 N120E SCALE=1.750 PER=.0379 DAMP=.60.
EPIC DIST = 54KM AZIMUTH AT STN = 347
Peak values (cm/sec/sec): 75.33

FILE071.SMC
TIME SERIES PLOT

FILE072.SMC

STATION: 2744 SAN SAND POINT, SCHOOL
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG
SMA-1 202 CHANNEL 2 UP SCALE=1.950 PER=.0380 DAMP=.60
EVENT: 1974 APR 06 01:53 54.870N 160.290W 37KM M=5.6
EPIC DIST = 54KM AZIMUTH AT STN = 347
Peak values (cm/sec/sec): 51.44
TIME SERIES PLOT

FILE073.SMC

STATION: 2744 SAN SAND POINT, SCHOOL.
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG.
SMA-1 202 CHANNEL 3 N030E SCALE=1.750 PER=.0377 DAMP=.60.
EPIC DIST = 54KM AZIMUTH AT STN = 347
Peak values (cm/sec/sec): 91.62
TIME SERIES PLOT

FILE074.SMC

STATION: 2744 SAN SAND POINT, SCHOOL.
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG.
SMA-1 202 CHANNEL 1 N120E SCALE=1.750 PER=.0379 DAMP=.60.
EPIC DIST = 50KM AZIMUTH AT STN = 346
Peak values (cm/sec/sec): -98.30
TIME SERIES PLOT

FILE075.SMC

STATION: 2744 SAN SAND POINT, SCHOOL
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG
SMA-1 202 CHANNEL 2 UP SCALE=1.950 PER=.0380 DAMP=.60
EVENT: 1974 APR 06 03:55 54.900N 160.290W 40KM M=5.8
EPIC DIST = 50KM AZIMUTH AT STN = 346
Peak values (cm/sec/sec): -48.37
TIME SERIES PLOT

FILE076.SMC

STATION: 2744 SAN SAND POINT, SCHOOL.
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG.
SMA-1 202 CHANNEL 3 NO30E SCALE=1.750 PER=.0377 DAMP=.60.
EPIC DIST = 50KM AZIMUTH AT STN = 346
Peak values (cm/sec/sec): 117.77
TIME SERIES PLOT

FILE095.SMC

STATION: 2744 SAN SAND POINT, SCHOOL
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG
SMA-1 202 CHANNEL 1 N120E SCALE=1.750 PER=.0379 DAMP=.60
EVENT: 1975 JUL 25 10:40 55.040N 160.410W 38KM M=5.6 IV
EPIC DIST = 34KM AZIMUTH AT STN = 353
Peak values (cm/sec/sec): -9.57
TIME SERIES PLOT

FILE096.SMC

STATION: 2744 SAN SAND POINT, SCHOOL.
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG.
SMA-1 202 CHANNEL 2 UP SCALE=1.950 PER=.0380 DAMP=.60.
EVENT: 1975 JUL 25 10:40 55.040N 160.410W 38KM M=5.6 IV.
EPIC DIST = 34KM AZIMUTH AT STN = 353
Peak values (cm/sec/sec): 11.75
STATION: 2744 SAN SAND POINT, SCHOOL
55.340N 160.497W RK VOLC BRECCIA GRND LEV 1 STORY BLDG
SMA-1 202 CHANNEL 3 NO30E SCALE=1.750 PER=.0377 DAMP=.60
EVENT: 1975 JUL 25 10:40 55.040N 160.410W 38KM M=5.6 IV
EPIC DIST = 34KM AZIMUTH AT STN = 353
Peak values (cm/sec/sec): -12.79
TIME SERIES PLOT

FILE101.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL
SMA-1 202 CHANNEL 1 N197E SCALE=1.750 PER=.0379 DAMP=.60
EVENT: 1979 JAN 27 18:57 54.790N 160.640W 53KM M=6.2
EPIC DIST = 62KM AZIMUTH AT STN = 9
Peak values (cm/sec/sec): 7.59

Scaled Instrument
cm/sec/sec

27jan79 18:57:00.000

Seconds
TIME SERIES PLOT

FILE102.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
SMA-1 202 CHANNEL 2 UP SCALE=1.950 PER=.0380 DAMP=.60.
EPIC DIST = 62KM AZIMUTH AT STN = 9
Peak values (cm/sec/sec): 8.01

Scaled Instrument
(cm/Sec/sec)

27Jan79 18:57:00.000

Seconds
TIME SERIES PLOT

FILE103.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
SMA-1 202 CHANNEL 3 N107E SCALE=1.750 PER=.0377 DAMP=.60.
EPIC DIST = 62KM AZIMUTH AT STN = 9
Peak values (cm/sec/sec): 9.18
FILE104.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL
SMA-1 202 CHANNEL 1 N197E SCALE=.75 PER=.0279 DAMP=.10
EVENT: 1979 FEB 13 05:34 55.170N 156.940W 47KM M=5.5
EPIC DIST = 226KM AZIMUTH AT STN = 273
Peak values (cm/sec/sec): 22.42
TIME SERIES PLOT

FILE105.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL
SMA-1 202 CHANNEL 2 UP SCALE=1.950 PER=.0380 DAMP=.60
EVENT: 1979 FEB 13 05:34 55.170N 156.940W 47KM M=6.5
EPIC DIST = 226KM AZIMUTH AT STN = 273
Peak values (cm/sec/sec): 9.80
TIME SERIES PLOT

FILE106.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
SMA-1 202 CHANNEL 3 N107E SCALE=1.750 PER=.0377 DAMP=.60.
EVENT: 1979 FEB 13 05:34 55.170N 156.940W 47KM M=6.5.
EPIC DIST = 226KM AZIMUTH AT STN = 273
Peak values (cm/sec/sec): -41.37

Scaled Instrument Response (cm/sec/sec)

0 2 4 6 8 10 12
13feb79 05:34:00.000
Seconds

200
TIME SERIES PLOT

FILE115.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
SMA-1 959 CHANNEL 1 NO70E SCALE=4.140 PER=.0581 DAMP=.60
EPIC DIST = 75KM AZIMUTH AT STN = 357
Peak values (cm/sec/sec): -18.41
TIME SERIES PLOT

FILE116.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
SMA-1 959 CHANNEL 2 UP SCALE=3.920 PER=.0562 DAMP=.60.
EPIC DIST = 75KM AZIMUTH AT STN = 357
Peak values (cm/sec/sec): -5.58

Scaled Instrument
(cm/sec/sec)

Secs

28dec81 10:28:00.000

Seconds

202
TIME SERIES PLOT

FILE117.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT .
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL .
SMA-1 959 CHANNEL 3 N340E SCALE=3.600 PER=.0578 DAMP=.60 .
EPIC DIST = 75KM AZIMUTH AT STN = 357
Peak values (cm/sec/sec): -24.08
TIME SERIES PLOT
FILE118.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VCLCANIC BRECCIA GROUND LEVEL.
FBA-3 16448 CHAN 1 UP SCALE=-2.458 PER=.0199 DAMP=.66.
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V.
EPIC DIST = 123KM AZIMUTH AT STN = 303
Peak values (cm/sec/sec): 5.22

Scaled Instrument
(cm/sec/sec)

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT
FILE119.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL
FBA-3 16449 CHAN 2 N250E SCALE=+2.485 PER=.0199 DAMP=.65
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V
EPIC DIST = 123KM AZIMUTH AT STN = 303
Peak values (cm/sec/sec): 7.55

Scaled Instrument
Response cm/sec/sec

14feb83 03:20:00.000

Seconds
STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
FBA-3 16447 CHAN 3 N160E SCALE=+2.481 PER=.0193 DAMP=.63.
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V.
EPIC DIST = 123KM AZIMUTH AT STN = 303
Peak values (cm/sec/sec): 6.72
TIME SERIES PLOT
FILE130.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
FBA-3 16448 CHAN 1 UP SCALE=-2.458 PER=.0199 DAMP=.66.
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V.
EPIC DIST = 118KM AZIMUTH AT STN = 297
Peak values (cm/sec/sec): -2.72

Scaled Instrument
cm/sec/sec

-2.80 -2.60 -2.40 -2.20 -2.00 -1.80 -1.60 -1.40 -1.20 -1.00 -0.80 -0.60 -0.40 -0.20 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80

14feb83 08:10:00.000

Seconds
TIME SERIES PLOT
FILE131.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT.
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL.
FBA-3 16449 CHAN 2 N250E SCALE=+2.485 PER=.0199 DAMP=.65.
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V.
EPIC DIST = 118KM AZIMUTH AT STN = 297.
Peak values (cm/sec/sec): -5.71

Scaled Instrument Response

-5.80

-5.80

14feb83 08:10:00.000

Seconds

208
TIME SERIES PLOT
FILE132.SMC

STATION: 2744 SAN SAND POINT, SEISMIC VAULT
55.340N 160.497W RK VOLCANIC BRECCIA GROUND LEVEL
FBA-3 16447 CHAN 3 N160E SCALE=+2.481 PER=.0193 DAMP=.63
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V
EPIC DIST = 118KM AZIMUTH AT STN = 297
Peak values (cm/sec/sec): -3.93
TIME SERIES PLOT
F54.SMC
STATION: 2744 SAN SAND POINT, SEISMIC VAULT
55.340N -160.497W SEISMOMETER VAULT
SMA-1 CHANNEL ? N340 SCALE=??? PER=0.0397 DAMP=0.5700
EVENT: 1985 9 25 1629 54.709N -159.728W 28.0KM M=4.4
EPIC DIST = 85.9KM AZIMUTH AT STN = N144.7
Peak values (cm/sec/sec): 22.84
TIME SERIES PLOT
F53.SMC
STATION: 2744 SAN - SAND POINT, SEISMIC VAULT
55.340N -160.497W SEISMMETER VAULT
SMA-1 CHANNEL ? UP SCALE=??? PER=0.0357 DAMP=0.5300
EVENT: 1985 9 25 1629 54.709N -159.728W 28.0KM M=4.4
EPIC DIST = 85.9KM AZIMUTH AT STN = N144.7
Peak values (cm/sec/sec): -12.00

Scaled Instrument Response cm/sec/sec

24sep85 16:29:00.000

Seconds
TIME SERIES PLOT
F52.SMC
STATION: 2744 SAN - SAND POINT, SEISMIC VAULT
55.340N -160.497W SEISMMOMETER VAULT
SMA-1 CHANNEL ? N70 SCALE=?? PER=0.0370 DAMP=0.5500
EVENT: 1985 9 25 1629 54.709N -159.728W 28.0KM M=4.4
EPIC DIST = 85.9KM AZIMUTH AT STN = N144.7
Peak values (cm/sec/sec): -17.69

Scaled Instrument

24sep85 16:29:00.000

Seconds
TIME SERIES PLOT

FILE142.SMC

EVENT DATE: year=1989 month=6 day=2 hour minute (24hr)=1557 second=22.700 time code=UTC
EVENT LOCATION: latitude=55.14500 longitude=-160.59200 depth (km)=58.0
SITE LOCATION: latitude=55.34000 longitude=-160.49716 elevation (m)=23.0
SITE ID: SANSM NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)=22.6 azimuth (deg)=N195.6
COMPONENT OF MOTION: azimuth=NO (HORIZONTAL)

Peak values (cm/sec/sec): 7.37
TIME SERIES PLOT

FILE143.SMC

PARAMETERS:
EVENT DATE: year=1989 month=6 day=2 hour=15:57 minute (24hr)=157 second=22.700 time code=UTC
EVENT LOCATION: latitude=55.14500 longitude=-160.59200 depth (km)=58.0
SITE LOCATION: latitude=55.34000 longitude=-160.49716 elevation (m)=23.0
SITE ID: SAND POINT, ALASKA, demeaned;
EPICENTRAL DISTANCE: distance (km)=22.6 azimuth (deg)=N195.6
COMPONENT OF MOTION: azimuth=UP

Peak values (cm/sec/sec): -2.86
TIME SERIES PLOT

FILE144.SMC

EVENT DATE: year=1989 month=6 day=2 hour|minute (24hr)=1557 second=22.700 time code=UTC
EVENT LOCATION: latitude=55.14500 longitude=-160.59200 depth (km)=58.0
SITE LOCATION: latitude=55.34000 longitude=-160.49716 elevation (m)=23.0
SITE ID: SANSM_NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)=22.6 azimuth (deg)=N195.6
COMPONENT OF MOTION: azimuth=N90 (HORIZONTAL)

Peak values (cm/sec/sec): -5.22
TIME SERIES PLOT

FILE145.SMC

EVENT DATE: year=1989 month= 9 day= 4 hour|minute (24hr)=1314 second=58.200 time code=UTC
EVENT LOCATION: latitude= 55.54300 longitude= -156.83501 depth (km)= 11.0
SITE LOCATION: latitude= 55.34000 longitude= -160.49716 elevation (m)= 23.0
SITE ID: SANSM NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)= 233.1 azimuth (deg)=N 82.9
COMPONENT OF MOTION: azimuth=N0 (HORIZONTAL)

Peak values (cm/sec/sec): 7.22

Scaled Instrument Response

cm/sec/sec

-7.30

| 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 |

3sep89 13:14:00.000

Seconds
TIME SERIES PLOT

FILE146.SMC

EVENT DATE: year=1989 month= 9 day= 4 hour|minute (24hr)=1314 second=58.200 time code=UTC
EVENT LOCATION: latitude= 55.54300 longitude= -156.83501 depth (km)= 11.0
SITE LOCATION: latitude= 55.34000 longitude= -160.49716 elevation (m)= 23.0
SITE ID: SANSM_NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)= 233.1 azimuth (deg)=N 82.9
COMPONENT OF MOTION: azimuth=UP

Peak values (cm/sec/sec): 4.45

Scaled Instrument Response cm/sec/sec

3sep89 13:14:00.000

Seconds

217
TIME SERIES PLOT

FILE147.SMC

EVENT DATE: year=1989 month= 9 day= 4 hour|minute (24hr)=1314 second=58.200 time code=UTC
EVENT LOCATION: latitude= 55.54300 longitude= -156.83501 depth (km)= 11.0
SITE LOCATION: latitude= 55.34000 longitude= -160.49716 elevation (m)= 23.0
SITE ID: SANSM NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)= 233.1 azimuth (deg)=N 82.9
COMPONENT OF MOTION: azimuth=N90 (HORIZONTAL)

Peak values (cm/sec/sec): 7.20
TIME SERIES PLOT

FILE148.SMC

EVENT DATE: year=1989 month=10 day=21 hour=21 minute (24hr)=1924 second=15.290 time code=UTC
EVENT LOCATION: latitude= 55.10700 longitude= -160.10699 depth (km)= 10.4
SITE LOCATION: latitude= 55.34000 longitude= -160.49716 elevation (m)= 23.0
SITE ID: SANSM NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)= 35.9 azimuth (deg)=N136.1
COMPONENT OF MOTION: azimuth=N0 (HORIZONTAL)

Peak values (cm/sec/sec): 2.04
TIME SERIES PLOT

FILE150.SMC

EVENT DATE: year=1989 month=10 day=21 hour:minute (24hr)=19:24 second=15.290 time code=UTC
EVENT LOCATION: latitude = 55.10700 longitude = -160.10699 depth (km) = 10.4
SITE LOCATION: latitude = 55.34000 longitude = -160.49716 elevation (m) = 23.0
SITE ID: SANSM NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km) = 35.9 azimuth (deg) = N136.1
COMPONENT OF MOTION: azimuth = N90 (HORIZONTAL)

Peak values (cm/sec/sec): -1.32
TIME SERIES PLOT

FILE149.SMC

EVENT DATE: year=1989 month=10 day=21 hour|minute (24hr)=1924 second=15.290 time code=UTC
EVENT LOCATION: latitude= 55.10700 longitude= -160.10699 depth (km)= 10.4
SITE LOCATION: latitude= 55.34000 longitude= -160.49716 elevation (m)= 23.0
SITE ID: SANSM NCEER - SAND POINT, ALASKA; demeaned;
EPICENTRAL DISTANCE: distance (km)= 35.9 azimuth (deg)=N136.1
COMPONENT OF MOTION: azimuth=UP

Peak values (cm/sec/sec): .71

21oct89 19:24:00.000

Seconds
TIME SERIES PLOT

FILE056.SMC

STATION: 2719 SSG* SELDOVIA, SCHOOL GYM. .
59.440N 151.710W RK METAMORPHIC GROUND LEV 1 STORY BLDG.
AR-240 CHANNEL 1 N090E SCALE=1.865(*) PER=.0523 DAMP=.58 .
EVENT: 1968 DEC 17 12:02 60.150N 152.820W 82KM M=6.3 V .
EPIC DIST = 101KM AZIMUTH AT STN = 142
Peak values (cm/sec/sec): 26.43

Scaled Instrument
Response

cm/sec/sec

17dec68 12:02:00.000

Seconds
TIME SERIES PLOT

FILE057.SMC

STATION: 2719 SSG* SELDOVIA, SCHOOL GYM.
59.440N 151.710W RK METAMORPHIC GROUND LEV 1 STORY BLDG.
AR-240 CHANNEL 2 UP SCALE=1.865(*) PER=.0631 DAMP=.55.
EVENT: 1968 DEC 17 12:02 60.150N 152.820W 82KM M=6.3 V.
EPIC DIST = 101KM AZIMUTH AT STN = 142
Peak values (cm/sec/sec): 17.19
TIME SERIES PLOT

FILE058.SMC

STATION: 2719 SSG* SELDOVIA, SCHOOL GYM.
59.440N 151.710W RK METAMORPHIC GROUND LEV 1 STORY BLDG.
AR-240 CHANNEL 3 NO00E SCALE=1.868(*) PER=.0626 DAMP=.57.
EVENT: 1968 DEC 17 12:02 60.150N 152.820W 82KM M=6.3 V.
EPIC DIST = 101KM AZIMUTH AT STN = 142
Peak values (cm/sec/sec): -40.52

Scaled Instrument

<table>
<thead>
<tr>
<th>Time (Seconds)</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
<th>8</th>
<th>10</th>
<th>12</th>
<th>14</th>
<th>16</th>
<th>18</th>
<th>20</th>
<th>22</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instrument</td>
<td></td>
</tr>
</tbody>
</table>
TIME SERIES PLOT

FILE053.SMC

STATION: 2713 SWH* SEWARD, WESLEYAN HOSPITAL .
60.110N 149.440W RK METAMORPHIC BASEMENT 1 STORY BLDG .
AR-240 CHANNEL 1 N090E SCALE=1.888(*) PER=.0565 DAMP=.56 .
EVENT: 1968 DEC 17 12:02 60.150N 152.820W 82KM M=6.3 V .
EPIC DIST = 188KM AZIMUTH AT STN = 93
Peak values (cm/sec/sec): 21.97
FILE054.SMC

STATION: 2713 SWH* SEWARD, WESLEYAN HOSPITAL
60.110N 149.440W RK METAMORPHIC BASEMENT 1 STORY BLDG
AR-240 CHANNEL 2 UP SCALE=1.883(*) PER=.0585 DAMP=.55
EVENT: 1968 DEC 17 12:02 60.150N 152.820W 82KM M=6.3 V
EPIC DIST = 188KM AZIMUTH AT STN = 93
Peak values (cm/sec/sec): -26.03

Scaled Instrument
27.0
Raeer/Sec/sec

-27.0

17 dec 68 12:02:00.000

Seconds
FILE055.SMC

STATION: 2713 SWH* SEWARD, WESLEYAN HOSPITAL
60.110N 149.440W RK METAMORPHIC BASEMENT 1 STORY BLDG
AR-240 CHANNEL 3 N000E SCALE=1.888(*) PER=.0585 DAMP=.50
EVENT: 1968 DEC 17 12:02 60.150N 152.820W 82KM M=6.3 V
EPIC DIST = 188KM AZIMUTH AT STN = 93
Peak values (cm/sec/sec): 37.28

Scaled Instrument Response

17dec68 12:02:00.000

Seconds
TIME SERIES PLOT

FILE121.SMC

STATION: 2764 SIM SIMEONOF ISLAND.
54.920N 159.258W CONCRETE PLINTH IN SOIL OVER GRANITE.
SMA=1 960 CHANNEL 1 NO70E SCALE=1.980 PER=.0400 DAMP=.60.
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V.
EPIC DIST = 32KM AZIMUTH AT STN = 310
Peak values (cm/sec/sec): 29.87

Scaled Instrument Response
(1/sec sec)

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT

FILE122.SMC

STATION: 2764 SIM SIMEONOIF ISLAND
54.920N 159.258W CONCRETE PLINTH IN SOIL OVER GRANITE
SMA-1 960 CHANNEL 2 UP SCALE=1.870 PER=.0380 DAMP=.60
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V
EPIC DIST = 32KM AZIMUTH AT STN = 310
Peak values (cm/sec/sec): -19.97

Scaled Instrument Response
.cm/sec/sec

14feb83 03:20:00.000

Seconds
TIME SERIES PLOT

FILE123.SMC

STATION: 2764 SIM SIMEONOF ISLAND
54.920N 159.258W CONCRETE PLINTH IN SOIL OVER GRANITE
SMA-1 960 CHANNEL 3 N340E SCALE=1.850 PER=.0400 DAMP=.60
EVENT: 1983 FEB 14 03:20 54.736N 158.882W 25KM M=6.3 V
EPIC DIST = 32KM AZIMUTH AT STN = 310
Peak values (cm/sec/sec): 55.55

Scaled Instrument Response cm/sec/sec

14feb83 03:20:00.000

Seconds
FILE133.SMC

STATION: 2764 SIM SIMEONOF ISLAND
54.920N 159.258W CONCRETE PLINTH IN SOIL OVER GRANITE
SMA-1 960 CHANNEL 1 NO70E SCALE=1.980 PER=.0400 DAMP=.60
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V
EPIC DIST = 28KM AZIMUTH AT STN = 285
Peak values (cm/sec/sec): -27.88
TIME SERIES PLOT

FILE134.SMC

STATION: 2764 SIM SIMEONOF ISLAND
54.920N 159.258W CONCRETE PLINTH IN SOIL OVER GRANITE
SMA-1 960 CHANNEL 2 UP SCALE=1.870 PER=.0380 DAMP=.60
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V
EPIC DIST = 28KM AZIMUTH AT STN = 285
Peak values (cm/sec/sec): -15.40
TIME SERIES PLOT

FILE135.SMC

STATION: 2764 SIM SIMEONOF ISLAND
54.920N 159.258W CONCRETE PLINTH IN SOIL OVER GRANITE
SMA-1 960 CHANNEL 3 N340E SCALE=1.850 PER=.0400 DAMP=.60
EVENT: 1983 FEB 14 08:10 54.854N 158.843W 25KM M=6.0 V
EPIC DIST = 28KM AZIMUTH AT STN = 285
Peak values (cm/sec/sec): 40.53

Scaled Instrument Response

14feb83 08:10:00.000

Seconds
TIME SERIES PLOT

FILE068.SMC

STATION: 2714 SMC* SITKA, MAGNETIC OBS. HAND-DIGITISED.
57.060N 135.320W RK GREYWACKE GROUND LEV CONCRETE VAULT.
AR-240 CHANNEL 1 N180E SCALE=7.040(+) PER=.0520 DAMP=.59.
EVENT: 1972 JUL 30 21:45 56.770N 135.910W 29KM M=7.5 VII.
EPIC DIST = 48KM AZIMUTH AT STN = 48
Peak values (cm/sec/sec): 76.50
TIME SERIES PLOT

FILE069.SMC

STATION: 2714 SMO* SITKA, MAGNETIC OBS. HAND-DIGITISED.
57.060N 135.320W RK GREYWACKE GROUND LEV CONCRETE VAULT.
AR-240 CHANNEL 2 UP SCALE=9.390(+) PER=.0570 DAMP=.61.
EVENT: 1972 JUL 30 21:45 56.770N 135.910W 29KM M=7.5 VII.
EPIC DIST = 48KM AZIMUTH AT STN = 48
Peak values (cm/sec/sec): -51.54
TIME SERIES PLOT

FILE070.SMC

STATION: 2714 SMO* SITKA, MAGNETIC OBS. HAND-DIGITISED .
57.060N 135.320W RK GREYWACKE GROUND LEV CONCRETE VAULT .
AR-240 CHANNEL 3 NO90E SCALE=7.010(+) PER=.0490 DAMP=.57 .
EPIC DIST = 48KM AZIMUTH AT STN = 48
Peak values (cm/sec/sec): 89.40
TIME SERIES PLOT

FILE092.SMC

STATION: 2727 TLK TALKEETNA, FAA VOR BLDG.
62.300N 150.100W GROUND LEVEL 1 STORY BLDG.
SMA-1 CHANNEL 1 N165E SCALE=2.000 PER=0.0400 DAMP=0.59
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V
EPIC DIST = 47KM AZIMUTH AT STN = 335
Peak values (cm/sec/sec): -72.35
TIME SERIES PLOT

FILE093.SMC

STATION: 2727 TLK TALKEETNA, FAA VOR BLDG.
62.300N 150.100W GROUND LEVEL 1 STORY BLDG.
SMA-1 CHANNEL 2 UP SCALE=1.850 PER=.0390 DAMP=.59
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V
EPIC DIST = 47KM AZIMUTH AT STN = 335
Peak values (cm/sec/sec): -87.69
TIME SERIES PLOT

FILE094.SMC

STATION: 2727 TLK TALKEETNA, FAA VOR BLDG.
62.300N 150.100W GROUND LEVEL 1 STORY BLDG.
SMA-1 CHANNEL 3 NO75E SCALE=1.850 PER=.0400 DAMP=.59
EVENT: 1975 JAN 01 03:55 61.920N 149.720W 58KM M=6.0 V
EPIC DIST = 47KM AZIMUTH AT STN = 335
Peak values (cm/sec/sec): 74.95

Scaled Instrument Response

cm/sec/sec

1Jan75 03:55:00.000

Seconds
TIME SERIES PLOT
F6 SMC

STATION: 2727 TLK - TALKEETNA, ALASKA FAA-VOR BUILDING
62.300N -150.100W 1-STORY BLDG
SMA-1 CHANNEL 7 N75 SCALE=??? PER=0.0400 DAMP=0.5900
EVENT: 1978 5 5 0533 63.302N -150.970W 134.0KM M=5.1
EPIC DIST = 120.4KM AZIMUTH AT STN = N338.7
Peak values (cm/sec/sec): 11.72

Scaled Instrument Response /cm/sec/sec

5may78 05:33:00.000

Seconds
TIME SERIES PLOT
F5.SMC
STATION: 2727 TLK - TALKEETNA, ALASKA FAA-VOR BUILDING
62.300N -150.100W 1-STORY BLDG
SMA-1 CHANNEL ? UP SCALE=??? PER=0.0390 DAMP=0.5900
EVENT: 1978 5 5 0533 63.302N -150.970W 134.0KM M=5.1
EPIC DIST = 120.4KM AZIMUTH AT STN = N38.7
Peak values (cm/sec/sec): 10.11
TIME SERIES PLOT

FILE112.SMC

STATION: 2728 YAK YAKUTAT, FAA VOR BLDG.
59.510N 139.650W SL FILL ON MUSKEG GRND LVL 1 STOR BLDG
SMA-1 326 CHANNEL 1 N009E PER=.0380 DAMP=.59
EVENT: 1979 FEB 28 21:27 60.640N 141.590W 13KM M=7.3
EPIC DIST = 166KM AZIMUTH AT STN = 140
Peak values (cm/sec/sec): 81.33

Scaled Instrument
cm/sec/sec

0 10 20 30 40 50 60 70 80 90

28feb79 21:27:00.000

Seconds
TIME SERIES PLOT

FILE113.SMC

STATION: 2728 YAK YAKUTAT, FAA VOR BLDG.
59.510N 139.650W SL FILL ON MUSKEG GRND LVL 1 STOR BLDG
SMA-1 326 CHANNEL 2 UP PER=.0390 DAMP=.60
EVENT: 1979 FEB 28 21:27 60.640N 141.590W 13KM M=7.3
EPIC DIST = 166KM AZIMUTH AT STN = 140
Peak values (cm/sec/sec): -24.36

Scaled Instrument Response cm/sec/sec

28feb79 21:27:00.000

Seconds
TIME SERIES PLOT

FILE114.SMC

STATION: 2728 YAK YAKUTAT, FAA VOR BLDG.
59.510N 139.650W SL FILL ON MUSKEG GRND LVL 1 STOR BLDG
SMA-1 326 CHANNEL 3 N279E PER=.0380 DAMP=.59
EVENT: 1979 FEB 28 21:27 60.640N 141.590W 13KM M=7.3
EPIC DIST = 166KM AZIMUTH AT STN = 140
Peak values (cm/sec/sec): -60.81

Scaled Instrument Response

cm/sec/sec

28feb79 21:27:00.000

Seconds

245
APPENDIX B

RESPONSE SPECTRA ASSOCIATED WITH ACCELERATION TIME
HISTORIES OF APPENDIX A
Station name = 2701 ADN* ADAK, NAVAL BASE; Code = 2701; Component = 180
EQ name = earthquake; name unknown; EQ date = 02may71

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-velocity Response, cm/sec

Natural Period, Seconds:

1.0 10. 100.

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Station name = 2701
EQ name = earthquake
EQ date = 02May51
Component = 90
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2701 ADN* ADAK, NAVAL BASE; Code = 2701; Component = UP
EQ name = earthquake name unknown; EQ date = 13aug74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2701 ADN* ADAK, NAVAL BASE; Code= 2701; Component= 90
EQ name= earthquake name unknown; EQ date= 13aug74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec

Natural Period, Seconds.
Station name = 2701 ADN* ADAK, NAVAL BASE; Code = 2701; Component = 180
EQ name = earthquake name unknown; EQ date = 11nov74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2701 ADN* ADAK, NAVAL BASE; Code = 2701; Component = UP
EQ name = earthquake name unknown; EQ date = 11nov74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2701 ADN* ADAK, NAVAL BASE; Code = 2701; Component = 90
EQ name = earthquake name unknown; EQ date = 11nov74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name: 2701 ADN* ADAK, NAVAL BASE; Code: 2701; Component: UP
EQ name: earthquake name unknown; EQ date: 22feb76

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 287
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 05oct84

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= UP
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 05oct84

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

[Graph showing pseudo-velocity response spectra with different damping values against natural period in seconds]
Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 197
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 05oct84

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 287
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 19nov84

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2701 ADN - US NAVAL BASE, ADAK; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 19nov84

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 287
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 28dec85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name: 2701 ADN - US NAVAL BASE, ADAK; Code: XXXX; Component: 197
EQ name: ALASKAN SUBDUCTION ZONE EARTHQ; EQ date: 28dec85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 197
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 02mar86
Station name = 2701 ADN - US NAVAL BASE, ADAK; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 02mar86

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 287
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 02mar86
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2701 ADN - US NAVAL BASE, ADAK; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 07may86

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2701 ADN - US NAVAL BASE, ADAK; Code= XXXX; Component= 287
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 07may86

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds

Pseudo-velocity Response, cm/sec
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2702 ANCHORAGE, GOULE HAL; Code = 2702; Component = UP
EQ name = earthquake name unknown; EQ date = 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = AMU 2702 - ANCHORAGE, ALASKA; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 30dec85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name: AMU 2702 - ANCHORAGE, ALASKA; Code= XXXX; Component= 360
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 30dec85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2703 ANH ANCHORAGE, AK NATIVE; Code = 2703; Component = UP
EQ name = earthquake name unknown; EQ date = 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec

Natural Period, Seconds.
Station name= 2703 ANH ANCHORAGE, AK NATIVE; Code= 270
EQ name= earthquake name unknown; EQ date= 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2716 AWH ANCHORAGE, WESTWARD; Code= 2716; Component= 135
EQ name= earthquake name unknown; EQ date= 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2716 AWH ANCHORAGE, WESTWARD; Code = 2716; Component = 45
EQ name = earthquake name unknown; EQ date = 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = BKJ 2773 - BIG KONIUJI, ALASKA; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 09oct85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = BJK 2773 - BIG KONIUJI, ALASKA; Code = XXXX; Component = 65
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 09oct85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

![Graph of Pseudo-Velocity Response Spectra](image)

- Natural Period, Seconds.
Station name= BKJ 2773 - BIG KONIUJI, ALASKA; Code= XXXX; Component= 345
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = BKJ 2773 - BIG KONIUJI, ALASKA; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= BKJ 2773 - BIG KONIUJI, ALASKA; Code= XXXX; Component= 75
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2776 CKB CHERNABURA ISLAND; Code= 2776; Component= 70
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

![Pseudo-Velocity Response Spectra Graph](image-url)
Station name= 2776 CNB' CHERNABURA ISLAND; Code= 2776; Component= UP
EQ name= earthquake name unknown; EQ date= 14feb83.

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2776 GNB CHERNABURA ISLAND; Code= 2776; Component= 340
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2776 CNB CHERNABURA ISLAND; Code= 2776; Component= 70
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2776 CNB CHERNABURA ISLAND; Code= 2776; Component= UP
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2776 CNB CHERNABURA ISLAND; Code= 2776; Component= .340
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2776 CNB - CHERNABURA ISLAND;
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ;
Component = 343
Code = XXXX
EQ date = 25sep85

Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2776 CNB - CHERNABURA ISLAND; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 25sep85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2776 CNB - CHERNABURA ISLAND; Code= XXXX; Component= 73
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 25sep85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2776 CNB - CHERNABURA ISLAND; Code = XXXX; Component = 343
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 09oct85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2776 CNB - CHERNA3URA ISLAND; Code= XXXX; Component= 73
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 09oct85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2776 CNB - CHERNABURA ISLAND; Code = XXXX; Component = 343
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 14nov85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-velocity Response, cm/sec

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds

Pseudo-velocity Response Spectra

Station name = 2776 CNB - CHERNAURA ISLAND, Code = XXXX, Component = 73
EQ name = ALASKAN SUBDUCTION ZONE, EQ date = 14NOV85
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2776 CNB - CHERNABURA ISLAND; Code = XXXX; Component = 73
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2706 MES CORDOVA, MT. ECCLES; Code = 2706; Component = UP
EQ name = earthquake name unknown; EQ date = 05jun64

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2706 MES CORDOVA, MT. ECCLES; Code= 2706; Component= 196
EQ name= earthquake qame unknown; EQ date= 05jun64

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2710 KDN* KODIAK, U.S. NAVAL S; Code= 2710; Component= 270
EQ name= earthquake name unknown; EQ date= 05jun64

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2710 KDN* KODIAK, U.S. NAVAL S; Code = 2710; Component = UP
EQ name = earthquake name unknown; EQ date = 05jun64

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec
Natural Period, Seconds.
Station name= 2710 KDN* KODIAC, U.S. NAVAL S; Code= 2710; Component= 180
EQ name= earthquake name unknown; EQ date= 05jun64

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec
Natural Period, Seconds.
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2710 KDN* KODIAK, U.S. NAVAL S; Code = 2710; Component = UP
EQ name = earthquake name unknown; EQ date = 04sep65

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2710 KDN* KODIAK, U.S. NAVAL S; Code= 2710; Component= 260
EQ name= earthquake name unknown; EQ date= 04sep65

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec vs Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Station name = 2710 KDN* KODIAK, U.S. NAVAL S; Code = 2710; Component = 350
EQ name = earthquake name unknown; EQ date = 22dec65
Station name: 2710 KDN* KODIAK, U.S. NAVAL S; Code: 2710; Component: UP
EQ name: earthquake name unknown; EQ date: 22dec65

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2710 KDN* KODIAK, U.S. NAVAL S; Code= 2710; Component= 260
EQ name= earthquake name unknown; EQ date= 22dec65

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2739 KDS KODIAK, USCG CENTRAL; Code= 2739; Component= 350
EQ name= earthquake name unknown; EQ date= 11mar70

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2739 KDS KODIAK, USCG CENTRAL; Code= 2739; Component= 260
EQ name= earthquake name unknown; EQ date= 11mar70

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2734 ICY ICY BAY, GULF TIMBER; Code = 2734; Component = 180
EQ name = earthquake name unknown; EQ date = 28feb79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2765 MDY·MUNDAY CREEK; Code= 2765; Component= 270
EQ name= earthquake name unknown; EQ date= 28feb79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = NGI 2774 - NAGAI, ALASKA; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 21may85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= NGI 2774 - NAGAI, ALASKA; Code= XXXX; Component= 267
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = NGI 2774 - NAGAI, ALASKA; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec

Natural Period, Seconds.
Station name= NGI 2774 - NAGAI, ALASKA; Code= XXXX; Component= 357
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 02may87

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2789 PIRATE SHAKE, NAGAI; Code = 2789; Component = 72
EQ name = earthquake name unknown; EQ date = 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2789 PRS PIRATE SHAKES, NAGAI; Code = 2789; Component = UP
EQ name = earthquake name unknown; EQ date = 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2789 PRS PIRATE SHAKE, NAGAI; Code = 2789; Component = 72
EQ name = earthquake name unknown; EQ date = 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec

Natural Period, Seconds.
Station name= 2789 PRS PIRATE SHAKE, NAGAI; Code= 2789; Component= UP
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2744 SAN SAND POINT, SCHOOL; Code= 2744; Component= UP
EQ name= earthquake name unknown; EQ date= 06apr74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2744 SAN SAND POINT, SCHOOL; Code = 2744; Component = 120
EQ name = earthquake name unknown; EQ date = 06apr74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND POINT, SCHOOL; Code= 2744; Component= 30
EQ name= earthquake name unknown; EQ date= 06apr74

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name: 2744 SAN SAND POINT, SCHOOL; Code: 2744; Component: I20
EQ name: earthquake name unknown; EQ date: 25 Jul 75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name: 2744 SAN SAND POINT, SCHOOL; Code: 2744; Component: UP
EQ name: earthquake name 'unknown'; EQ date: 25 jul 75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND POINT, SCHOOL; Code= 2744; Component= 30
EQ name= earthquake name unknown; EQ date= 25 Jul 75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2744 SAN SAND POINT, SEISMIC; Code= 2744; Component= 197
EQ name= earthquake name unknown; EQ date= 27jan79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2744 SAN SAND POINT, SEISMIC; Code= 2744; Component= UP
EQ name= earthquake name unknown; EQ date= 27jan79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2744 SAN SAND POINT; SEISMIC; Code = 2744; Component = 107
EQ name = earthquake name unknown; EQ date = 27jan79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2744 SAN SAND POINT SEISMIC; Code = 2744; Component = UP
EQ name = earthquake name unknown; EQ date = 13feb79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND POINT, SEISMIC; Code= 2744; Component= 70
EQ name= earthquake name unknown; EQ date= 28dec81

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND PQINT, SEISMIC; Code= 2744; Component= UP
EQ name= earthquake name unknown; EQ date= 28dec81

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND POINT, SEISMIC; Code= 2744; Component= 340
EQ name= earthquake name unknown; EQ date= 28dec81

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND POINT, SEISMIC; Code= 2744; Component= UP
EQ name= earthquake name unknown; EQ date= 14feb83.

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name: 2744 SAN SAND POINT; SEISMIC; Code: 2744; Component: 250
EQ name: earthquake name unknown; EQ date: 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2744 SAN SAND POINT, SEISMIC; Code = 2744; Component = UP
EQ name = earthquake name unknown; EQ date = 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2744 SAN SAND POINT, SEISMIC; Code= 2744; Component= 160
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Station name = 2744 SAN - SAND POINT, SEISMIC; Code = XXXX; Component = 340
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 25sep85
Station name = 2744 SAN - SAND POINT, SEISMIC; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 25sep85

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name: SANSM NCEER - SAND POINT, ALAS; Code: XXXX; Component: 0
EQ name: SOUTHERN ALASKAN EARTHQUAKE; EQ date: 04 Sep 1989

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = SANSM_NCEER - SAND POINT; ALAS; Code = XXXX; Component = 90
EQ name = SOUTHERN ALASKAN EARTHQUAKE; EQ date = 04 SEP 1989

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds
Pseudo-velocity Response, cm/sec
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= SANSM NCEER - SAND POINT, ALAS; Code= XXXX; Component= 90
EQ name= ALASKAN SUBDUCTION ZONE EARTHQ; EQ date= 21oct89

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec

Natural Period, Seconds.
Station name = SANSM NCEER - SAND POINT, ALAS; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 21oct89

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name: 2719 SSG* SELDOVIA, SCHOOL GYM; Code: 2719; Component: UP
EQ name: earthquake name unknown; EQ date: 17dec68

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2719 SSG* SELDOVIA, SCHOOL GYM; Code = 2719; Component = 0
EQ name = earthquake name unknown; EQ date = 17dec68

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name = 2713 SWH* SEWARD, WESLEYAN HOS; Code = 2713; Component = 90
EQ name = earthquake name unknown; EQ date = 17dec68

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name = 2713 SWH* SEWARD, WESLEYAN HOS; Code = 2713; Component = 0
EQ name = earthquake name unknown; EQ date = 17dec68

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Pseudo-Velocity Response Spectra

Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Station name = 2764 SIM SIMEONOF ISLAND; Code = 2764; Component = 340
EQ name = earthquake name unknown; EQ date = 14feb83
Station name= 2764 SIM SIMEONOF ISLAND; Code= 2764; Component= 70
EQ name= earthquake name unknown; EQ date= 14feb83

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Pseudo-velocity Response, cm/sec

Natural Period, Seconds.
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2764 SIM SIMEONOF ISLAND; Code= 2764; Component= 340
EQ name= earthquake name unknown; EQ date= 14feb83.

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds
Pseudo-velocity Response, cm/sec
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2714 SMO* SITKA, MAGNETIC OBS.; Code= 2714; Component= UP
EQ name= earthquake name unknown; EQ date= 30ju172.

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2727 TLK TALKEETNA, FAA VOR B; Code= 2727; Component= 165
EQ name= earthquake name unknown; EQ date= 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name: 2727 TLK TALKEETNA, FAA VOR B; Code: 2727; Component: 75
EQ name: earthquake name unknown; EQ date: 01jan75

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.

Pseudo-velocity Response, cm/sec
Station name = 2727 TLK - TALKEETNA, ALASKA F; Code = XXXX; Component = UP
EQ name = ALASKAN SUBDUCTION ZONE EARTHQ; EQ date = 05may78

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name: 2727 TLK - TALKEETNA, ALASKA F; Code: XXXX; Component: 165
EQ name: ALASKAN SUBDUCTION ZONE EARTHQ; EQ date: 05may78

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2728 YAK YAKUTAT, FAA VOR BLD; Code= 2728; Component= 9
EQ name= earthquake name unknown; EQ date= 28feb79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2
Station name= 2728 YAK YAKUTAT, FAA VOR BLD; Code= 2728; Component= UP
EQ name= earthquake name unknown; EQ date= 28feb79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2

Natural Period, Seconds.
Station name= 2728 YAK YAKUTAT, FAA VOR BLD; Code= 2728; Component= 279
EQ name= earthquake name unknown; EQ date= 28feb79

Pseudo-Velocity Response Spectra
Damping = 0.0, 0.02, 0.05, 0.1, 0.2