State of Alaska
Arctic Offshore Mooring Program
Engineering Considerations

Andrew T. Metzger, Ph.D., P.E.

Alaska University
Transportation Research Center
INTRODUCTION

Alaska Deep Draft Arctic Ports Charette

- Planning meeting for a possible deep draft port in AK (May 16-17, 2011)
- Results
 - Stakeholder requirements may necessitate an Arctic Marine Transportation System
 - Large capital project(s)
 - Long-term development plan
INTRODUCTION

- Alaska Deep Draft Arctic Ports Charette
 - Is there any “low-hanging fruit”?
 - Element of an Arctic Marine Transportation System
 - Not large capital project
 - Completion in near-term
 - Will benefit the State of Alaska
 - Ideally, benefit local stakeholders as well
INTRODUCTION

- Proposition: Alaska Offshore Mooring Program
 - Provide a network of offshore moorings for vessels
 - Locate in areas of “safe harbor”
 - Sheltered from weather
 - Near supplies, resources or activities
 - Doesn’t require construction of a conventional “port”
 - Offshore Fuel Terminal
INTRODUCTION

- Alaska Offshore Mooring Program
 - Offshore Fuel Terminal(s)
 - Fuel and food supplies limit duration of marine operations in the Arctic
 - Offshore fuel terminals could extend time-on-site – effectiveness of operations
 - Possible economic benefit for coastal communities

www.lonely planet.com
INTRODUCTION

- Alaska Offshore Mooring Program
 - “Build-it-and-we’ll-use-it” sentiment from Federal agencies
 - NOAA
 - USCG
 - USN
 - Reiterated last month at:

www.lonely planet.com
INTRODUCTION

- Remainder of this presentation:
 - Engineering concerns for arctic offshore mooring facilities
 - Current Practice
 - Adaption to the Arctic
 - Engineering design criteria for Alaska
 - Site-specific environmental conditions
 - How INE/ AUTC can assist the State
CURRENT PRACTICE

- Designing an offshore vessel mooring to support operations

- Consult the “Handbook”:
 - UFC 4-159-03 - Design: Moorings
CURRENT PRACTICE

- Designing an offshore vessel mooring

- Type of Mooring?
 - Relatively economical
 - Readily deployed/ retrieved
 - Low maintenance
 - High reliability
 - Simplistic
 - “low hanging fruit” project
CURRENT PRACTICE

- Designing an offshore vessel mooring to support operations

- Type of Mooring?
 - Recommendation:
 - Single-point mooring
 - Drag-type Anchors
CURRENT PRACTICE

- Designing an offshore vessel mooring
 - E.g.:

UFC 4-159-03 - Design: Moorings;
Figure 7-2
CURRENT PRACTICE

- Designing an offshore vessel mooring to support operations

- Drag-anchor
 - To suit bottom conditions
 - Design Vessel??? + Environmental Conditions

- Sinkers
 - As-needed
 - Attenuate vessel motion
 - Reduce scope

- Chain/ Cable to suit vessel and wind/ current conditions
CURRENT PRACTICE

- **Buoy**
 - Standard buoys available
 - Size (buoyancy) to suit vessel and site conditions
 - Are standard buoys suitable in the Arctic?

- **How do we mitigate the effects of Sea-ice?**
 - Remove moorings before onset of ice?
 - Sink the buoy? (interesting possibility...)
 - Ice-capable buoy? (no apparent off-the-shelf versions for this application)
CURRENT PRACTICE

- Standard buoy

12-FOOT BUOY

BUOY SHACKLE
TENSION BAR
RAIL
FLEXIBLE FOAM
URETHANE SHELL - WHITE
RADAR REFLECTOR - OPTIONAL
RIGID FOAM
Adaption to Arctic

- **Alternative: Spar Buoy**
 - Natural tendency to damp vessel motion
 - Possibly good choice for exposed areas
 - Spar-type mooring buoys have been proposed to mitigate ice
 - Design so lowest portion of buoy is lower than deepest anticipated ice
 - Ice could potentially ride-over buoy (with no vessel tied up)
Adaption to Arctic

- Alternative: Spar Buoy
- E.g.: Ice-capable spar buoy

Adaption to Arctic

- **Fuel Mooring**
 - It has been done...

René Raaijmakers, Business Development Manager, Bluewater Offshore Production Systems (USA) Inc., Texas, USA
Adaption to Arctic

- Fuel Mooring
 - It has been done...

René Raaijmakers, Business Development Manager, Bluewater Offshore Production Systems (USA) Inc., Texas, USA
Adaption to Arctic

- **Fuel Mooring**
 - Specialized equipment
 - Most often used in petrochemical industry
 - Probably require a scaled-down version
 - Recommendation:
 - Develop performance specifications for a site in Alaska
 - Hire a consultant/manufacturer to design/fabricate to suit
 - Consideration of subsea pipeline burial depth in land-fast ice zone
Engineering Considerations

- Design of Mooring systems in the Arctic
 - Planning Level Discussions...
 - Who are the customers?
 - Federal Agencies
 - NOAA
 - USCG
 - USN
 - Industry
 - O&G
 - Mining
 - Local (Alaska) shipping interests
Engineering Considerations

- Design of Mooring systems in the Arctic
 - Planning Level Discussions...
 - Identifying Customers will help identify the: *Design Vessel(s)*
 - Vessel Type (cargo, barge, etc.)
 - Length
 - Draft
 - Displacement
Engineering Considerations

- **Design of Mooring systems in the Arctic**
 - Require appropriate design criteria to design reliable engineered systems
 - We don’t design for the mean, we design for the extreme
 - “Reliable”: low probability of failure
 - What are the extreme environmental conditions in the Arctic? – i.e., low probability of exceedance
Engineering Considerations

- Design of Mooring systems in the Arctic

- Challenges in the U.S. Arctic:
 - Environmental parameters needed for engineering design are not readily available
 - Need engineering design criteria for the U.S. Arctic
Engineering Considerations

- Design of Mooring systems in the Arctic
 - Must identify extremes of:
 - Wind
 - Current
 - Sea-ice conditions
 - Soil Conditions

...for each site
Engineering Considerations

- Design of Mooring systems in the Arctic
 - How do we identify extremes?
 - Site-specific measurements coupled with...
 - Forecast/ Hindecast techniques
 - Until we have decades of data, this is the most rational option we have....
How AUTC can help

Planning level:

- Planning support
 - Technical
 - Technical
 - Administrative

- Assist in identifying potential site(s) for moorings

- Feasibility/ Economics of a fuel mooring
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Engineering Design Criteria
 - Collect site-specific data
 - Recording Doppler Current Profiler (RDCP) studies
 - Current velocity monitoring
 - Wave Conditions
 - slides to follow...
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Engineering Design Criteria
 - RDCP

Aanderaa: www.aadi.no
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Engineering Design Criteria
 - Collect site-specific data - Wind, wave and currents (see website)
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Engineering Design Criteria
 - Collect site-specific data
 - Wind monitoring
 - Off-the-shelf anemometer
 - Sea-ice monitoring
 - Off-the-shelf marine radar
 - Radar has been successfully used for this purpose (Barrow) (see website)
Design of Mooring systems in the Arctic

Proposal A – Engineering Design Criteria

1) Assemble an environmental monitoring package
 - RDCP
 - Anemometer
 - Marine Radar
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal A – Engineering Design Criteria
 - 2) Deploy Instrumentation at candidate site during “ice-free” season
 - Collect soil sample during deployment
 - Sampling bucket
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal A – Engineering Design Criteria
 - 3)
 - Retrieve Instrumentation
 - Redeploy to next site
Proposal A – Engineering Design Criteria

4) Analyze data

Provide design recommendations

- Wind
- Current
- Sea-ice considerations
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal A – Engineering Design Criteria

 - Site-specific results could be applied to a conventional mooring or fuel mooring

 - Fuel mooring would require additional specifications related to fuel transference requirements

 - Instrumentation package, once acquired, could be deployed at multiple sites
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal B – Mitigating Sea-ice
 - 1)
 - Identify possible methods for mitigating sea-ice
 - Fixed, ice-hardened structure
 - Removable mooring
 - “Sinkable” mooring
 - Ice-capable buoy (e.g., spar buoy)
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal B – Mitigating Sea-ice
 - 2)
 - Conceptual Designs
 - 3)
 - Analyses
 - Engineering
 - Costs
 - 4)
 - Provide Recommendations to State
 - Prototype development
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal C – Multimodal Planning Study
 - *Expansion of fuel mooring concept*
 - Basis
 - **Fuel and Supplies (food)** are two limiting factors for US Arctic Maritime Operations
 - **Fuel mooring**
 - Fuel supply along route to the Arctic
 - Periodic bulk fuel shipment from sea to shore side facility via fuel mooring
 - Potential economic benefits for coastal community and State
 - Lower fuel costs for community?
 - Create jobs?
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal C– Multimodal Planning Study
 - Basis
 - Fuel and Supplies (food) are two limiting factors on cruises to the US Arctic
 - Resupply (food)
 - Resupply point along Arctic route
 - Food/supplies could be flown to site
 - Lighter supplies to vessels offshore
 - Lightering from beach – no port needed
 - Additional Potential economic benefits for coastal community and State
Engineering Design Criteria

- Design of Mooring systems in the Arctic
 - Proposal C – Multimodal Planning Study
 - Combined fuel and resupply facility will be, by definition, a multimodal transportation hub
 - Will greatly expand operational capabilities in the Arctic
 - State owned/operated?

www.lonelyplanet.com
College of Engineering and Mines
Institute of Northern engineering
Alaska University Transportation Research Center
University of Alaska Fairbanks

Andrew T. Metzger
atmetzger@alaska.edu
907.474.6120